
Source Detection with Duchamp v1.0
A User’s Guide

Matthew Whiting
Australia Telescope National Facility

CSIRO

CONTENTS 2

Contents

1 Introduction and getting going quickly 3
1.1 A summary of the execution steps . 3
1.2 Guide to terminology . 4
1.3 Why Duchamp? . 4

2 User Inputs 4

3 What Duchamp is doing 5
3.1 Image input . 5
3.2 Image modification . 5

3.2.1 Blank pixel removal . 5
3.2.2 Baseline removal . 6
3.2.3 Ignoring bright Milky Way emission 6

3.3 Image reconstruction . 6
3.3.1 Algorithm . 7
3.3.2 Note on Statistics . 7
3.3.3 User control of reconstruction parameters 8

3.4 Reconstruction I/O . 8
3.5 Searching the image . 9
3.6 Merging detected objects . 10

4 Outputs 11
4.1 During execution . 11
4.2 Results . 11

4.2.1 Table of Results . 11
4.2.2 Other results lists . 13
4.2.3 Graphical output – spectra . 13
4.2.4 Graphical output – maps . 14

5 Notes and hints on the use of Duchamp 14

6 Future Developments 16

A Obtaining and Installing Duchamp 18

B Available parameters 19

C Example parameter files 23

D Example results file 25

E Example VOTable output 26

F Example Karma Annotation File output 27

G Robust statistics for a Normal distribution 28

H How Gaussian noise changes with wavelet scale. 29

1 INTRODUCTION AND GETTING GOING QUICKLY 3

1 Introduction and getting going quickly

This document provides a user’s guide to Duchamp, an object-finder for use on spectral-line
data cubes. The basic execution of Duchamp is to read in a FITS data cube, find sources
in the cube, and produce a text file of positions, velocities and fluxes of the detections, as
well as a postscript file of the spectra of each detection.

So, you have a FITS cube, and you want to find the sources in it. What do you do?
The first step is to make an input file that contains the list of parameters. Brief and
detailed examples are shown in Appendix C. This file provides the input file name, the
various output files, and defines various parameters that control the execution.

The standard way to run Duchamp is by the command

Duchamp -p [parameter file]

replacing [parameter file] with the name of the file listing the parameters. Alterna-
tively, you can use the syntax

Duchamp -f [FITS file]

where [FITS file] is the file you wish to search. In the latter case, all parameters will
take their default values detailed in Appendix B. In either case, the program will then
work away and give you the list of detections and their spectra. The program execution
is summarised below, and detailed in §3. Information on inputs is in §2 and Appendix B,
and descriptions of the output is in §4.

1.1 A summary of the execution steps

The basic flow of the program is summarised here – all steps are discussed in more detail
in the following sections.

1. If the -p option is used, the parameter file given on the command line is read in,
and the parameters absorbed.

2. The FITS image is located and read in to memory.

3. If requested, a FITS image with a previously reconstructed array is read in.

4. If requested, blank pixels are trimmed from the edges, and the baseline of each
spectrum is removed.

5. If the reconstruction method is requested, and the reconstructed array has not been
read in at Step 3 above, the cube is reconstructed using the à trous wavelet method.

6. Searching for objects then takes place, using the requested thresholding method.

7. The list of objects is condensed by merging neighbouring objects and removing those
deemed unacceptable.

8. The baselines and trimmed pixels are replaced prior to output.

9. The details of the detections are written to screen and to the requested output file.

10. Maps showing the spatial location of the detections are written.

2 USER INPUTS 4

11. The integrated spectra of each detection are written to a postscript file.

12. If requested, the reconstructed array can be written to a new FITS file.

1.2 Guide to terminology

First, a brief note on the use of terminology in this guide. Duchamp is designed to work on
FITS “cubes”. These are FITS1 image arrays with three dimensions – they are assumed
to have the following form: the first two dimensions (referred to as x and y) are spatial
directions (that is, relating to the position on the sky), while the third dimension, z, is
the spectral direction, which can correspond to frequency, wavelength, or velocity. The
three dimensional analogue of pixels are “voxels”, or volume cells – a voxel is defined by
a unique (x, y, z) location and has a unique flux or intensity value associated with it.

Each spatial pixel (a given (x, y) coordinate) can be said to be a single spectrum, while
a slice through the cube perpendicular to the spectral direction at a given z-value is a
single channel (the 2-D image is a channel map).

Detection involves locating a contiguous group of voxels with fluxes above a certain
threshold. Duchamp makes no assumptions as to the size or shape of the detected features,
other than having user-selected minimum size criteria.

Features that are detected are assumed to be positive. The user can choose to search
for negative features by setting an input parameter – this inverts the cube prior to the
search (see §3.5 for details).

Note that it is possible to run Duchamp on a two-dimensional image (i.e. one with no
frequency or velocity information), or indeed a one-dimensional array, and many of the
features of the program will work fine. The focus, however, is on object detection in three
dimensions.

1.3 Why Duchamp?

Well, it’s important for a program to have a name, and the initial working title of cubefind
was somewhat uninspiring. I wanted to avoid the classic astronomical approach of design-
ing a cute acronym, and since it is designed to work on cubes, I looked at naming it after
a cubist. Picasso, sadly, was already taken (Minchin 1999), so I settled on naming it after
Marcel Duchamp, another cubist, but also one of the first artists to work with “found
objects”.

2 User Inputs

Input to the program is provided by means of a parameter file. Parameters are listed in the
file, followed by the value that should be assigned to them. The syntax used is paramName
value. Parameter names are not case-sensitive, and lines in the input file that start with #

are ignored. If a parameter is listed more than once, the latter value is used, but otherwise
the order in which the parameters are listed in the input file is arbitrary.

If a parameter is not listed, the default value is assumed. The defaults are chosen
to provide a good result (using the reconstruction method), so the user doesn’t need to

1FITS is the Flexible Image Transport System – see Hanisch et al. (2001) or websites such as
http://fits.cv.nrao.edu/FITS.html for details.

http://fits.cv.nrao.edu/FITS.html

3 WHAT DUCHAMP IS DOING 5

specify many new parameters in the input file. Note that the image file must be specified!
The parameters that can be set are listed in Appendix B, with their default values in
parentheses.

The parameters with names starting with flag are stored as bool variables, and so
are either true = 1 or false = 0. Duchamp will only read them from the file as integers,
and so they should be entered in the file as 0 or 1 (see example file in Appendix C).

3 What Duchamp is doing

The execution flow of Duchamp is detailed here, indicating the main algorithmic steps
that are used. The program is written in C/C++ and makes use of the cfitsio, wcslib
and pgplot libraries.

3.1 Image input

The cube is read in using basic cfitsio commands, and stored as an array in a special C++
class. This class keeps track of the list of detected objects, as well as any reconstructed
arrays that are made (see §3.3). The World Coordinate System (WCS) information for the
cube is also obtained from the FITS header by wcslib functions (Calabretta & Greisen
2002; Greisen & Calabretta 2002), and this information, in the form of a wcsprm structure,
is also stored in the same class.

A sub-section of an image can be requested via the subsection parameter in the
parameter file – this can be a good idea if the cube has very noisy edges, which may
produce many spurious detections. The generalised form of the subsection that is used by
cfitsio is [x1:x2:dx,y1:y2:dy,z1:z2:dz], such that the x-coordinates run from x1 to
x2 (inclusive), with steps of dx. The step value can be omitted (so a subsection of the
form [2:50,2:50,10:1000] is still valid). Duchamp does not make use of any step value
present in the subsection string, and any that are present are removed before the file is
opened.

If one wants the full range of a coordinate then replace the range with an asterisk, e.g.
[2:50,2:50,*]. If one wants to use a subsection, one must set flagSubsection = 1. A
complete description of the section syntax can be found at the fitsio web site 2.

3.2 Image modification

Several modifications to the cube can be made that improve the execution and efficiency
of Duchamp (these are optional – their use is indicated by the relevant flags set in the
input parameter file).

3.2.1 Blank pixel removal

First, the cube is trimmed of any BLANK pixels that pad the image out to a rectangular
shape. This is optional, its use determined by the flagBlankPix parameter. The value
for these pixels is read from the FITS header (using the BLANK, BSCALE and BZERO
keywords), but if these are not present then the value can be specified by the user in the
parameter file using blankPixValue.

2 http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c user/node90.html

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node90.html

3 WHAT DUCHAMP IS DOING 6

This stage is particularly important for the reconstruction step, as lots of BLANK pixels
on the edges will smooth out features in the wavelet calculation stage. The trimming will
also reduce the size of the cube’s array, speeding up the execution. The amount of trimming
is recorded, and these pixels are added back in once the source-detection is completed (so
that quoted pixel positions are applicable to the original cube).

Rows and columns are trimmed one at a time until the first non-BLANK pixel is
reached, so that the image remains rectangular. In practice, this means that there will be
BLANK pixels left in the trimmed image (if the non-BLANK region is non-rectangular).
However, these are ignored in all further calculations done on the cube.

3.2.2 Baseline removal

Second, the user may request the removal of baselines from the spectra, via the parameter
flagBaseline. This may be necessary if there is a strong baseline ripple present, which
can result in spurious detections at the high points of the ripple. The baseline is calculated
from a wavelet reconstruction procedure (see §3.3) that keeps only the two largest scales.
This is done separately for each spatial pixel (i.e. for each spectrum in the cube), and the
baselines are stored and added back in before any output is done. In this way the quoted
fluxes and displayed spectra are as one would see from the input cube itself – even though
the detection (and reconstruction if applicable) is done on the baseline-removed cube.

The presence of very strong signals (for instance, masers at several hundred Jy) can
affect the determination of the baseline, leading to a large dip centred on the signal in
the baseline-subtracted spectrum. To prevent this, the signal is trimmed prior to the
reconstruction process at some standard threshold (at 8σ above the mean). The baseline
determined should thus be representative of the true, signal-free baseline. Note that this
trimming is only a temporary measure which does not affect the source-detection.

3.2.3 Ignoring bright Milky Way emission

Finally, a single set of contiguous channels can be ignored – these may exhibit very strong
emission, such as that from the Milky Way as seen in extragalactic Hi cubes (hence the
references to “Milky Way” in relation to this task – apologies to Galactic astronomers!).
Such dominant channels will produce many detections that are unnecessary, uninteresting
(if one is interested in extragalactic Hi) and large (in size and hence in memory usage),
and so will slow the program down and detract from the interesting detections. The use
of this feature is controlled by the flagMW parameter, and the exact channels concerned
are able to be set by the user (using maxMW and minMW – these give an inclusive range of
channels). When employed, these channels are temporarily blanked out for the searching,
and the scaling of the spectral output (see Fig. 1) will not take them into account. They
will be present in the reconstructed array, however, and so will be included in the saved
FITS file (see §3.4). When the final spectra are plotted, the range of channels covered by
these parameters is indicated by a green hashed box.

3.3 Image reconstruction

The user can direct Duchamp to reconstruct the data cube using the à trous wavelet
procedure. A good description of the procedure can be found in Starck & Murtagh (2002).
The reconstruction is an effective way of removing a lot of the noise in the image, allowing
one to search reliably to fainter levels, and reducing the number of spurious detections.

3 WHAT DUCHAMP IS DOING 7

This is an optional step, but one that greatly enhances the source-detection process, with
the payoff that it can be relatively time- and memory-intensive.

3.3.1 Algorithm

The steps in the à trous reconstruction are as follows:

1. Set the reconstructed array to 0 everywhere.

2. The input array is discretely convolved with a given filter function. This is deter-
mined from the parameter file via the filterCode parameter – see Appendix B for
details on the filters available.

3. The wavelet coefficients are calculated by taking the difference between the convolved
array and the input array.

4. If the wavelet coefficients at a given point are above the requested threshold (given
by snrRecon as the number of σ above the mean and adjusted to the current scale
– see Appendix H), add these to the reconstructed array.

5. The separation of the filter coefficients is doubled. (Note that this step provides the
name of the procedure3, as gaps or holes are created in the filter coverage.)

6. The procedure is repeated from step 2, using the convolved array as the input array.

7. Continue until the required maximum number of scales is reached.

8. Add the final smoothed (i.e. convolved) array to the reconstructed array. This pro-
vides the “DC offset”, as each of the wavelet coefficient arrays will have zero mean.

The reconstruction has at least two iterations. The first iteration makes a first pass at
the wavelet reconstruction (the process outlined in the 8 stages above), but the residual
array will inevitably have some structure still in it, so the wavelet filtering is done on the
residual, and any significant wavelet terms are added to the final reconstruction. This step
is repeated until the change in the σ of the background is less than some fiducial amount.

It is important to note that the à trous decomposition is an example of a “redundant”
transformation. If no thresholding is performed, the sum of all the wavelet coefficient
arrays and the final smoothed array is identical to the input array. The thresholding thus
removes only the unwanted structure in the array.

Note that any BLANK pixels that are still in the cube will not be altered by the
reconstruction – they will be left as BLANK so that the shape of the valid part of the
cube is preserved.

3.3.2 Note on Statistics

The correct calculation of the reconstructed array needs good estimation of the underlying
mean and standard deviation of the background noise distribution. These statistics are
estimated using robust methods, to avoid corruption by strong outlying points. The
mean of the distribution is actually estimated by the median, while the median absolute
deviation from the median (MADFM) is calculated and corrected assuming Gaussianity to

3à trous means “with holes” in French.

3 WHAT DUCHAMP IS DOING 8

estimate the underlying standard deviation σ. The Gaussianity (or Normality) assumption
is critical, as the MADFM does not give the same value as the usual rms or standard
deviation value – for a normal distribution N(µ, σ) we find MADFM= 0.6744888σ. The
difference between the MADFM and σ is corrected for, so the user need only think in
the usual multiples of σ when setting snrRecon. See Appendix G for a derivation of this
value.

When thresholding the different wavelet scales, the value of σ as measured from the
wavelet array needs to be scaled to account for the increased amount of correlation between
neighbouring pixels (due to the convolution). See Appendix H for details on this scaling.

3.3.3 User control of reconstruction parameters

The most important parameter for the user to select in relation to the reconstruction is
the threshold for each wavelet array. This is set using the snrRecon parameter, and is
given as a multiple of the rms (estimated by the MADFM) above the mean (which for the
wavelet arrays should be approximately zero). There are several other parameters that
can be altered as well that affect the outcome of the reconstruction.

By default, the cube is reconstructed in three dimensions, using a 3-dimensional fil-
ter and 3-dimensional convolution. This can be altered, however, using the parameter
reconDim. If set to 1, this means the cube is reconstructed by considering each spectrum
separately, whereas reconDim=2 will mean the cube is reconstructed by doing each channel
map separately. The merits of these choices are discussed in §5, but it should be noted
that a 2-dimensional reconstruction can be susceptible to edge effects if the spatial shape
is not rectangular.

The user can also select the minimum scale to be used in the reconstruction – the first
scale exhibits the highest frequency variations, and so ignoring this one can sometimes be
beneficial in removing excess noise. The default, however, is to use all scales (minscale
= 1).

Finally, the filter that is used for the convolution can be selected by using filterCode

and the relevant code number – the choices are listed in Appendix B. A larger filter
will give a better reconstruction, but take longer and use more memory when executing.
When multi-dimensional reconstruction is selected, this filter is used to construct a 2- or
3-dimensional equivalent.

3.4 Reconstruction I/O

The reconstruction stage can be relatively time-consuming, particularly for large cubes and
reconstructions in 3-D. To get around this, Duchamp provides a shortcut to allow users
to perform multiple searches (e.g. with different thresholds) on the same reconstruction
without calculating the reconstruction each time.

The first step is to choose to save the reconstructed array as a FITS file by setting
flagOutputRecon = true. The file will be saved in the same directory as the input image,
so the user needs to have write permissions for that directory.

The filename will be derived from the input filename, with extra information detail-
ing the reconstruction that has been done. For example, suppose image.fits has been
reconstructed using a 3-dimensional reconstruction with filter 2, thresholded at 4σ us-
ing all scales. The output filename will then be image.RECON-3-2-4-1.fits (i.e. it uses
the four parameters relevant for the à trous reconstruction as listed in Appendix B).

3 WHAT DUCHAMP IS DOING 9

The new FITS file will also have these parameters as header keywords. If a subsection
of the input image has been used (see §3.1), the format of the output filename will be
image.sub.RECON-3-2-4-1.fits, and the subsection that has been used is also stored in
the FITS header.

Likewise, the residual image, defined as the difference between the input and recon-
structed arrays, can also be saved in the same manner by setting flagOutputResid =

true. Its filename will be the same as above, with RESID replacing RECON.
If a reconstructed image has been saved, it can be read in and used instead of redoing

the reconstruction. To do so, the user should set flagReconExists = true. The user
can indicate the name of the reconstructed FITS file using the reconFile parameter, or,
if this is not specified, Duchamp searches for the file with the name as defined above. If
the file is not found, the reconstruction is performed as normal. Note that to do this, the
user needs to set flagAtrous = true (obviously, if this is false, the reconstruction is
not needed).

3.5 Searching the image

The image is searched for detections in two ways: spectrally (a 1-dimensional search in
the spectrum in each spatial pixel), and spatially (a 2-dimensional search in the spatial
image in each channel). In both cases, the algorithm finds connected pixels that are above
the user-specified threshold. In the case of the spatial image search, the algorithm of
Lutz (1980) is used to raster scan through the image and connect groups of pixels on
neighbouring rows.

Note that this algorithm cannot be applied directly to a 3-dimensional case, as it
requires that objects are completely nested in a row: that is, if you are scanning along a
row, and one object finishes and another starts, you know that you will not get back to the
first one (if at all) until the second is completely finished for that row. Three-dimensional
data does not have this property, which is why we break up the searching into 1- and
2-dimensional cases.

The determination of the threshold is done in one of two ways. The first way is a simple
sigma-clipping, where a threshold is set at a fixed number n of standard deviations above
the mean, and pixels above this threshold are flagged as detected. The value of n is set
with the parameter snrCut. As before, the value of the standard deviation is estimated
by the MADFM, and corrected by the ratio derived in Appendix G.

The second method uses the False Discovery Rate (FDR) technique (Hopkins et al.
2002; Miller et al. 2001), whose basis we briefly detail here. The false discovery rate (given
by the number of false detections divided by the total number of detections) is fixed at a
certain value α (e.g. α = 0.05 implies 5% of detections are false positives). In practice, an
α value is chosen, and the ensemble average FDR (i.e. 〈FDR〉) when the method is used
will be less than α. One calculates p – the probability, assuming the null hypothesis is
true, of obtaining a test statistic as extreme as the pixel value (the observed test statistic)
– for each pixel, and sorts them in increasing order. One then calculates d where

d = max
j

{
j : Pj <

jα

cNN

}
,

and then rejects all hypotheses whose p-values are less than or equal to Pd. (So a Pi < Pd

will be rejected even if Pi ≥ jα/cNN .) Note that “reject hypothesis” here means “accept

3 WHAT DUCHAMP IS DOING 10

the pixel as an object pixel” (i.e. we are rejecting the null hypothesis that the pixel belongs
to the background).

The cN values here are normalisation constants that depend on the correlated nature of
the pixel values. If all the pixels are uncorrelated, then cN = 1. If N pixels are correlated,
then their tests will be dependent on each other, and so cN =

∑N
i=1 i−1. Hopkins et al.

(2002) consider real radio data, where the pixels are correlated over the beam. In this case
the sum is made over the N pixels that make up the beam. The value of N is calculated
from the FITS header (if the correct keywords – BMAJ, BMIN – are not present, a default
value of 10 pixels is assumed).

The theory behind the FDR method implies a direct connection between the choice of
α and the fraction of detections that will be false positives. However, due to the merging
process, this direct connection is lost when looking at the final number of detections –
see discussion in §5. The effect is that the number of false detections will be less than
indicated by the α value used.

If a reconstruction has been made, the residuals (defined as original − reconstruction)
are used to estimate the noise parameters of the cube. Otherwise they are estimated
directly from the cube itself. In both cases, robust estimators are used as described above.

Detections must have a minimum number of pixels to be counted. This minimum num-
ber is given by the input parameters minPix (for 2-dimensional searches) and minChannels

(for 1-dimensional searches).
The search only looks for positive features. If one is interested instead in negative

features (such as absorption lines), set the parameter flagNegative = true. This will
invert the cube (i.e. multiply all pixels by −1) prior to the search, and then re-invert the
cube (and the fluxes of any detections) after searching is complete. All outputs are done
in the same manner as normal, so that fluxes of detections will be negative.

3.6 Merging detected objects

The searching step produces a list of detected objects that will have many repeated de-
tections of a given object – for instance, spectral detections in adjacent pixels of the same
object and/or spatial detections in neighbouring channels. These are then combined in an
algorithm that matches all objects judged to be “close”. This determination is made in
one of two ways.

One way is to define two thresholds – one spatial and one in velocity – and say that two
objects should be merged if there is at least one pair of pixels that lie within these threshold
distances of each other. These thresholds are specified by the parameters threshSpatial
and threshVelocity (in units of pixels and channels respectively).

Alternatively, the spatial requirement can be changed to say that there must be a pair of
pixels that are adjacent – a stricter, but perhaps more realistic requirement, particularly
when the spatial pixels have a large angular size (as is the case for Hi surveys). This
method can be selected by setting the parameter flagAdjacent to 1 (i.e. true) in the
parameter file. The velocity thresholding is done in the same way as the first option.

Once the detections have been merged, they may be “grown”. This is a process of
increasing the size of the detection by adding adjacent pixels that are above some secondary
threshold. This threshold is lower than the one used for the initial detection, but above
the noise level, so that faint pixels are only detected when they are close to a bright pixel.
The value of this threshold is a possible input parameter (growthCut), with a default value
of 1.5σ. The use of the growth algorithm is controlled by the flagGrowth parameter –

4 OUTPUTS 11

the default value of which is false. If the detections are grown, they are sent through
the merging algorithm a second time, to pick up any detections that now overlap or have
grown over each other.

Finally, to be accepted, the detections must span both a minimum number of channels
(to remove any spurious single-channel spikes that may be present), and a minimum
number of spatial pixels. These numbers, as for the original detection step, are set with
the minChannels and minPix parameters. The channel requirement means there must be
at least one set of minChannels consecutive channels in the source for it to be accepted.

4 Outputs

4.1 During execution

Duchamp provides the user with feedback whilst it is running, to keep the user informed
on the progress of the analysis. Most of this consists of self-explanatory messages about
the particular stage the program is up to. The relevant parameters are printed to the
screen at the start (once the file has been successfully read in), so the user is able to make
a quick check that the setup is correct (see Appendix app-input for an example).

If the cube is being trimmed (§3.2), the resulting dimensions are printed to indicate
how much has been trimmed. If a reconstruction is being done, a continually updating
message shows either the current iteration and scale, compared to the maximum scale
(when reconDim=3), or a progress bar showing the amount of the cube that has been
reconstructed (for smaller values of reconDim).

During the searching algorithms, the progress through the 1D and 2D searches are
shown. When the searches have completed, the number of objects found in both the 1D
and 2D searches are reported (see §3.5 for details).

In the merging process (where multiple detections of the same object are combined –
see §3.6), two stages of output occur. The first is when each object in the list is compared
with all others. The output shows two numbers: the first being how far through the
list the current object is, and the second being the length of the list. As the algorithm
proceeds, the first number should increase and the second should decrease (as objects are
combined). When the numbers meet (i.e. the whole list has been compared), the second
phase begins, in which multiply-appearing pixels in each object are removed, as are objects
not meeting the minimum channels requirement. During this phase, the total number of
accepted objects is shown, which should steadily increase until all have been accepted or
rejected. Note that these steps can be very quick for small numbers of detections.

Since this continual printing to screen has some overhead of time and CPU involved,
the user can elect to not print this information by setting the parameter verbose = 0. In
this case, the user is still informed as to the steps being undertaken, but the details of the
progress are not shown.

4.2 Results

4.2.1 Table of Results

Finally, we get to the results – the reason for running Duchamp in the first place. Once the
detection list is finalised, it is sorted by the mean velocity of the detections (or, if there
is no good WCS associated with the cube, by the mean Z-pixel position). The results

4 OUTPUTS 12

are then printed to the screen and to the output file, given by the OutFile parameter.
The results list, an example of which can be seen in Appendix D, contains the following
columns (note that the title of the columns depending on WCS information will depend
on the projection of the WCS):

Obj#: The ID number of the detection (simply the sequential count for the
list, which is ordered by increasing velocity).

Name: The IAU-format name of the detection (derived from the WCS position
– see below for a description of the format).

X: The average X-pixel position.

Y: The average Y-pixel position.

Z: The average Z-pixel position.

RA/GLON: The Right Ascension or Galactic Longitude of the centre of the object.

DEC/GLAT: The Declination or Galactic Latitude of the centre of the object.

VEL: The mean velocity of the object [units given by the spectralUnits

parameter].

w RA/w GLON: The width of the object in Right Ascension or Galactic Longitude
[arcmin].

w DEC/w GLAT: The width of the object in Declination Galactic Latitude [arcmin].

w VEL: The full velocity width of the detection (max channel − min channel,
in velocity units [see note below]).

F int: The integrated flux over the object, in the units of flux times velocity,
corrected for the beam if necessary.

F peak: The peak flux over the object, in the units of flux.

X1, X2: The minimum and maximum X-pixel coordinates.

Y1, Y2: The minimum and maximum Y-pixel coordinates.

Z1, Z2: The minimum and maximum Z-pixel coordinates.

Npix: The number of voxels (i.e. distinct (x, y, z) coordinates) in the detec-
tion.

Flag: Whether the detection has any warning flags (see below).

The Name is derived from the WCS position. For instance, a source centred on the RA,Dec
position 12h53m45s, -36◦24′12′′ will be called J125345−362412 (if the epoch is J2000) or
B125345−362412 (if B1950). An alternative form is used for Galactic coordinates: a source
centred on the position (l,b) = (323.1245, 5.4567) will be called G323.124+05.457. If the
WCS is not valid (i.e. is not present or does not have all the necessary information), the
Name, RA, DEC, VEL and related columns are not printed, but the pixel coordinates are
still provided.

The velocity units can be specified by the user, using the parameter spectralUnits

(enter it as a single string). The default value is km/s, which should be suitable for most
users. These units are also used to give the units of integrated flux.

The last column contains any warning flags about the detection. There are currently
two options here. An ‘E’ is printed if the detection is next to the edge of the image,
meaning either the limit of the pixels, or the limit of the non-BLANK pixel region. An

4 OUTPUTS 13

‘N’ is printed if the total flux, summed over all the (non-BLANK) pixels in the smallest
box that completely encloses the detection, is negative. Note that this sum is likely to
include non-detected pixels. It is of use in pointing out detections that lie next to strongly
negative pixels, such as might arise due to interference – the detected pixels might then
also be due to the interference, so caution is advised.

4.2.2 Other results lists

Two alternative results files can also be requested. One option is a VOTable-format XML
file, containing just the RA, Dec, Velocity and the corresponding widths of the detections,
as well as the fluxes. The user should set flagVOT = 1, and put the desired filename in the
parameter votFile – note that the default is for it not to be produced. This file should
be compatible with all Virtual Observatory tools (such as Aladin4). The second option is
an annotation file for use with the Karma toolkit of visualisation tools (in particular, with
kvis). This will draw a circle at the position of each detection, and number it according
to the Obj# given above. To make use of this option, the user should set flagKarma =

1, and put the desired filename in the parameter karmaFile – again, the default is for it
not to be produced.

As the program is running, it also (optionally) records the detections made in each
individual spectrum or channel (see §3.5 for details on this process). This is recorded in
the file given by the parameter LogFile. This file does not include the columns Name, RA,

DEC, w RA, w DEC, VEL, w VEL. This file is designed primarily for diagnostic purposes:
e.g. to see if a given set of pixels is detected in, say, one channel image, but does not survive
the merging process. The list of pixels (and their fluxes) in the final detection list are also
printed to this file, again for diagnostic purposes. The file also records the execution time,
as well as the command-line statement used to run Duchamp. The creation of this log file
can be prevented by setting flagLog = false. (This may be a good idea if you are not
interested in its contents, as it can be a large file if many pixels are being detected.)

4.2.3 Graphical output – spectra

As well as the output data file, a postscript file is created that shows the spectrum for each
detection, together with a small cutout image (the 0th moment) and basic information
about the detection (note that any flags are printed after the name of the detection, in
the format [E]). If the cube was reconstructed, the spectrum from the reconstruction is
shown in red, over the top of the original spectrum. The spectral extent of the detected
object is indicated by two dashed blue lines, and the region covered by the “Milky Way”
channels is shown by a green hashed box.

The spectrum that is plotted is governed by the spectralMethod parameter. It can be
either peak, where the spectrum is from the spatial pixel containing the detection’s peak
flux; or sum, where the spectrum is summed over all spatial pixels, and then corrected for
the beam size.

The spectral extent of the detection is indicated with blue lines, and a zoom is shown in
a separate window. The cutout image can optionally include a border around the spatial
pixels that are in the detection (turned on and off by the parameter drawBorders – the
default is true). It also includes a scale bar in the bottom left corner to indicate size – it

4 Aladin can be found on the web at http://aladin.u-strasbg.fr/

http://aladin.u-strasbg.fr/

5 NOTES AND HINTS ON THE USE OF DUCHAMP 14

Figure 1: An example of the spectrum output. Note several of the features discussed in the text: the
red lines indicating the reconstructed spectrum; the blue dashed lines indicating the spectral extent of
the detection; the green hashed area indicating the Milky Way channels that are ignored by the searching
algorithm; the blue border showing its spatial extent on the 0th moment map; and the 15 arcmin-long
scale bar.

is 15 arcmin long (note that due to projection effects it may be a slightly different physical
length from object to object). An example detection can be seen below in Fig. 1.

4.2.4 Graphical output – maps

Finally, a couple of images are optionally produced: a 0th moment map of the cube,
combining just the detected channels in each object, showing the integrated flux in grey-
scale; and a “detection image”, a grey-scale image where the pixel values are the number
of channels that spatial pixel is detected in. In both cases, if drawBorders = true, a
border is drawn around the spatial extent of each detection. An example moment map is
shown in Fig. 2. The production or otherwise of these images is governed by the flagMaps
parameter.

The purpose of these images are to provide a visual guide to where the detections have
been made, and, particularly in the case of the moment map, to provide an indication of
the strength of the source. In both cases, the detections are numbered (in the same sense
as the output list), and the spatial borders are marked out as for the cutout images in
the spectra file. Both these images are saved as postscript files (given by the parameters
momentMap and detectionMap respectively), with the latter also displayed in a pgplot
window (regardless of the state of flagMaps).

5 Notes and hints on the use of Duchamp

In using Duchamp, the user has to make a number of decisions about the way the program
runs. This section is designed to give the user some idea about what to choose.

The main choice is whether or not to use the wavelet reconstruction. The main benefits
of this are the marked reduction in the noise level, leading to regularly-shaped detections,
and good reliability for faint sources. The main drawback with its use is the long execution
time: to reconstruct a 170× 160× 1024 (hipass) cube often requires three iterations and
takes about 20-25 minutes to run completely. Note that this is for the three-dimensional
reconstruction: using reconDim=1 makes the reconstruction quicker (the full program then
takes about 6 minutes), but it is still the largest part of the time.

The searching part of the procedure is much quicker: searching an un-reconstructed
cube leads to execution times of only a couple of minutes. Alternatively, using the ability

5 NOTES AND HINTS ON THE USE OF DUCHAMP 15

Figure 2: An example of the moment map created by Duchamp. The full extent of the cube is covered,
and the 0th moment of each object is shown (integrated individually over all the detected channels).

to read in previously-saved reconstructed arrays makes running the reconstruction more
than once a more feasible prospect.

On the positive side, the shape of the detections in a cube that has been reconstructed
will be much more regular and smooth – the ragged edges that objects in the raw cube pos-
sess are smoothed by the removal of most of the noise. This enables better determination
of the shapes and characteristics of objects.

A further point to consider when using the reconstruction is that if the two-dimensional
reconstruction is chosen (reconDim=2), it can be susceptible to edge effects. If the valid
area in the cube (i.e. the part that is not BLANK) has non-rectangular edges, the con-
volution can produce artefacts in the reconstruction that mimic the edges and can lead
(depending on the selection threshold) to some spurious sources. Caution is advised with
such data – the user is advised to check carefully the reconstructed cube for the presence
of such artefacts. Note, however, that the 1- and 3-dimensional reconstructions are not
susceptible in the same way, since the spectral direction does not generally exhibit these
BLANK edges, and so we recommend the use of either of these.

6 FUTURE DEVELOPMENTS 16

If one chooses the reconstruction method, a further decision is required on the signal-
to-noise cutoff used in determining acceptable wavelet coefficients. A larger value will
remove more noise from the cube, at the expense of losing fainter sources, while a smaller
value will include more noise, which may produce spurious detections, but will be more
sensitive to faint sources. Values of less than about 3σ tend to not reduce the noise a great
deal and can lead to many spurious sources (although this will depend on the nature of
the cube).

When it comes to searching, the FDR method produces more reliable results than
simple sigma-clipping, particularly in the absence of reconstruction. However, it does
not work in exactly the way one would expect for a given value of alpha. For instance,
setting fairly liberal values of alpha (say, 0.1) will often lead to a much smaller fraction
of false detections (i.e. much less than 10%). This is the effect of the merging algorithms,
that combine the sources after the detection stage, and reject detections not meeting the
minimum pixel or channel requirements. It is thus better to aim for larger alpha values
than those derived from a straight conversion of the desired false detection rate.

Finally, as Duchamp is still undergoing development, there are some elements that are
not fully developed. In particular, it is not as clever as I would like at avoiding interference.
The ability to place requirements on the minimum number of channels and pixels partially
circumvents this problem, but work is being done to make Duchamp smarter at rejecting
signals that are clearly (to a human eye at least) interference. See the following section
for further improvements that are planned.

6 Future Developments

This is both a list of planned improvements and a wish-list of features that would be nice
to include (but are not planned in the immediate future). Let me know if there are items
not on this list, or items on the list you would like prioritised.

• Better determination of the noise characteristics of spectral-line cubes, including
understanding how the noise is generated and developing a model for it. Planned.

• Include more source analysis. Examples could be: shape information; measurements
of HI mass; more variety of measurements of velocity width and profile. Some
planned.

• Provide some indication of the significance of the detection (i.e. some S/N-like value).
Planned.

• Improved ability to reject interference, possibly on the spectral shape of features.
Planned.

• Ability to separate (de-blend) distinct sources that have been merged. Planned.

• Link to lists of possible counterparts (e.g. via NED/SIMBAD/other VO tools?).
Wish-list.

• On-line web service interface, so a user can upload a cube and get back a source-list.
Wish-list.

• Embed Duchamp in a GUI, to move away from the text-based interaction. Wish-
list.

REFERENCES 17

References

Calabretta M., Greisen E., 2002, A&A, 395, 1077

Greisen E., Calabretta M., 2002, A&A, 395, 1061

Hanisch R., Farris A., Greisen E., Pence W., Schlesinger B., Teuben P., Thompson R.,
Warnock A., 2001, A&A, 376, 359

Hopkins A., Miller C., Connolly A., Genovese C., Nichol R., Wasserman L., 2002, AJ, 123,
1086

Lutz R., 1980, The Computer Journal, 23, 262

Meyer M., et al., 2004, MNRAS, 350, 1195

Miller C., Genovese C., Nichol R., Wasserman L., Connolly A., Reichart D., Hopkins A.,
Schneider J., Moore A., 2001, AJ, 122, 3492

Minchin R., 1999, PASA, 16, 12

Starck J.-L., Murtagh F., 2002, “Astronomical Image and Data Analysis”. Springer

A OBTAINING AND INSTALLING DUCHAMP 18

A Obtaining and Installing Duchamp

The Duchamp web page can be found at the following location:
http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
Here you can find a gzipped tar archive of the source code that can be downloaded and
extracted, as well as this User’s Guide in postscript and hyperlinked PDF formats.

Duchamp can be built on Unix systems by typing (assuming that the prompt your
terminal provides is a > – don’t type this character!):

> ./configure

> make

> make clean (optional -- to remove the object files)

Run in this manner, configure should find all the necessary libraries, but if some
libraries have been installed in non-standard locations, it may fail. In this case, you can
specify additional directories to look in by giving extra command-line arguments. There
are separate options for library files (eg. libcpgplot.a) and header files (eg. cpgplot.h).

For example, if wcslib had been installed in /home/mduchamp/wcslib, there are two
libraries that are likely to be in separate subdirectories: C/ and pgsbox/. Each subdi-
rectory needs to be searched for library and header files, so one could build Duchamp by
typing:

> ./configure \
LIBDIRS="/home/mduchamp/wcslib/C /home/mduchamp/wcslib/pgsbox" \
INCDIRS="/home/mduchamp/wcslib/C /home/mduchamp/wcslib/pgsbox"

And then just run make in the usual fashion:

> make

This will produce the executable Duchamp. There are two possible ways to run it. The
first is:

> Duchamp -f [FITS file]

where [FITS file] is the file you wish to search. This method simply uses the default
values of all parameters.

The second method allows some determination of the parameter values by the user.
Type:

> Duchamp -p [parameter file]

where [parameterFile] is a file with the input parameters, including the name of the
cube you want to search. There are two example input files included with the distribution.
The smaller one, InputExample, shows the typical parameters one might want to set.
The large one, InputComplete, lists all possible parameters that can be entered, and
a brief description of them. To get going quickly, just replace the ”your-file-here” in
InputExample with your image name, and type

> Duchamp -p InputExample

The following appendices provide details on the individual parameters, and show ex-
amples of the output files that Duchamp produces.

http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp

B AVAILABLE PARAMETERS 19

B Available parameters

The full list of parameters that can be listed in the input file are given here. If not listed,
they take the default value given in parentheses. Since the order of the parameters in the
input file does not matter, they are grouped here in logical sections.

Input-output related

ImageFile (no default assumed): The filename of the data cube to be analysed.

flagSubsection [false]: A flag to indicate whether one wants a subsection of the
requested image.

Subsection [[*,*,*]]: The requested subsection, which should be specified in the
format [x1:x2,y1:y2,z1:z2], where the limits are inclusive. If the
full range of a dimension is required, use a *, e.g. if you want the full
spectral range of a subsection of the image, use [30:140,30:140,*].

flagReconExists [false]: A flag to indicate whether the reconstructed array has been
saved by a previous run of Duchamp. If set true, the reconstructed
array will be read from the file given by reconFile, rather than cal-
culated directly.

reconFile (no default assumed): The FITS file that contains the reconstructed ar-
ray. If flagReconExists is true and this parameter is not defined, the
default file searched will be determined by the à trous parameters (see
§3.3).

OutFile [duchamp-Results.txt]: The file containing the final list of detections. This
also records the list of input parameters.

SpectraFile [duchamp-Spectra.ps]: The postscript file containing the resulting inte-
grated spectra and images of the detections.

flagLog [true]: A flag to indicate whether intermediate detections should be logged.

LogFile [duchamp-Logfile.txt]: The file in which intermediate detections are logged.
These are detections that have not been merged. This is primarily for
use in debugging and diagnostic purposes – normal use of the program
will probably not require this.

flagOutputRecon [false]: A flag to say whether or not to save the reconstructed
cube as a FITS file. The filename will be derived from the ImageFile –
the reconstruction of image.fits will be saved as image.RECON?.fits,
where ? stands for the value of snrRecon (see below).

flagOutputResid [false]: As for flagOutputRecon, but for the residual array – the
difference between the original cube and the reconstructed cube. The
filename will be image.RESID?.fits.

flagVOT [false]: A flag to say whether to create a VOTable file corresponding to
the information in outfile. This will be an XML file in the Virtual
Observatory VOTable format.

votFile [duchamp-Results.xml]: The VOTable file with the list of final detections.
Some input parameters are also recorded.

B AVAILABLE PARAMETERS 20

flagKarma [false]: A flag to say whether to create a Karma annotation file cor-
responding to the information in outfile. This can be used as an
overlay for the Karma programs such as kvis.

karmaFile [duchamp-Results.ann]: The Karma annotation file showing the list of
final detections.

flagMaps [true]: A flag to say whether to save postscript files showing the 0th moment
map of the whole cube (parameter momentMap) and the detection image
(detectionMap).

momentMap [duchamp-MomentMap.ps]: A postscript file containing a map of the 0th
moment of the detected sources, as well as pixel and WCS coordinates.

detectionMap [duchamp-DetectionMap.ps]: A postscript file showing each of the
detected objects, coloured in greyscale by the number of channels
spanned by each pixel. Also shows pixel and WCS coordinates.

Modifying the cube

flagBlankPix [true]: A flag to say whether to remove BLANK pixels from the analysis
– these are pixels set to some particular value because they fall outside
the imaged area.

blankPixValue [-8.00061]: The value of the BLANK pixels, if this information is
not contained in the FITS header (the usual procedure is to obtain
this value from the header information – in which case the value set
by this parameter is ignored).

flagMW [false]: A flag to say whether to ignore channels contaminated by Milky
Way (or other) emission – the searching algorithms will not look at
these channels.

maxMW [112]: The maximum channel number containing “Milky Way” emission.

minMW [75]: The minimum channel number containing “Milky Way” emission. Note
that the range specified by maxMW and minMW is inclusive.

flagBaseline [false]: A flag to say whether to remove the baseline from each spectrum
in the cube for the purposes of reconstruction and detection.

Detection related

General detection

flagNegative [false]: A flag to indicate that the features being searched for are neg-
ative. The cube will be inverted prior to searching.

snrCut [3.]: The cut-off value for thresholding, in terms of number of σ above the
mean.

flagGrowth [false]: A flag indicating whether or not to grow the detected objects to
a smaller threshold.

growthCut [2.]: The smaller threshold using in growing detections. In units of σ
above the mean.

B AVAILABLE PARAMETERS 21

À trous reconstruction

flagATrous [true]: A flag indicating whether or not to reconstruct the cube using the
à trous wavelet reconstruction. See §3.3 for details.

reconDim [3]: The number of dimensions to use in the reconstruction. 1 means re-
construct each spectrum separately, 2 means each channel map is done
separately, and 3 means do the whole cube in one go.

scaleMin [1]: The minimum wavelet scale to be used in the reconstruction. A value
of 1 means “use all scales”.

snrRecon [4]: The thresholding cutoff used in the reconstruction – only wavelet co-
efficients this many σ above the mean (or greater) are included in the
reconstruction.

filterCode [1]: The code number of the filter to use in the reconstruction. The options
are:

• 1: B3-spline filter: coefficients = (1
16

, 1
4
, 3

8
, 1

4
, 1

16
)

• 2: Triangle filter: coefficients = (1
4
, 1

2
, 1

4
)

• 3: Haar wavelet: coefficients = (0, 1
2
, 1

2
)

FDR method

flagFDR [false]: A flag indicating whether or not to use the False Discovery Rate
method in thresholding the pixels.

alphaFDR [0.01]: The α parameter used in the FDR analysis. The average number
of false detections, as a fraction of the total number, will be less than
α (see §3.5).

Merging detections

minPix [2]: The minimum number of spatial pixels for a single detection to be
counted.

minChannels [3]: The minimum number of consecutive channels that must be present
in a detection.

flagAdjacent [true]: A flag indicating whether to use the “adjacent pixel” criterion to
decide whether to merge objects. If not, the next two parameters are
used to determine whether objects are within the necessary thresholds.

threshSpatial [3.]: The maximum allowed minimum spatial separation (in pixels)
between two detections for them to be merged into one. Only used if
flagAdjacent = false.

threshVelocity [7.]: The maximum allowed minimum channel separation between
two detections for them to be merged into one.

Other parameters

spectralMethod [peak]: This indicates which method is used to plot the output spec-
tra: peak means plot the spectrum containing the detection’s peak

B AVAILABLE PARAMETERS 22

pixel; sum means sum the spectra of each detected spatial pixel, and
correct for the beam size. Any other choice defaults to peak.

spectralUnits [km/s]: The user can specify the units of the spectral axis. Assuming
the WCS of the FITS file is valid, the spectral axis is transformed into
velocity, and put into these units for all output and for calculations
such as the integrated flux of a detection.

drawBorders [true]: A flag indicating whether borders are to be drawn around the
detected objects in the moment maps included in the output (see for
example Fig. 1).

verbose [true]: A flag indicating whether to print the progress of computationally-
intensive algorithms (such as the searching and merging) to screen.

C EXAMPLE PARAMETER FILES 23

C Example parameter files

This is what a typical parameter file would look like.

imageFile /DATA/SITAR_1/whi550/cubes/H201_abcde_luther_chop.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

flagSubsection 0

flagOutputRecon 0

flagOutputResid 0

flagBlankPix 1

flagMW 1

minMW 75

maxMW 112

minPix 3

flagGrowth 1

growthCut 1.5

flagATrous 0

scaleMin 1

snrRecon 4

flagFDR 1

alphaFDR 0.1

numPixPSF 20

snrCut 3

threshSpatial 3

threshVelocity 7

Note that it is not necessary to include all these parameters in the file, only those that
need to be changed from the defaults (as listed in Appendix B), which in this case would
be very few. A minimal parameter file might look like:

imageFile /DATA/SITAR_1/whi550/cubes/H201_abcde_luther_chop.fits

flagLog 0

snrRecon 3

snrCut 2.5

minChannels 4

This will reconstruct the cube with a lower SNR value than the default, select objects at
a lower threshold, with a looser minimum channel requirement, and not keep a log of the
intermediate detections.

The following page demonstrates how the parameters are presented to the user, both
on the screen at execution time, and in the output and log files. On each line, there is a
description on the parameter, the relevant parameter name that is used in the input file
(if there is one that the user can enter), and the value of the parameter being used.

C EXAMPLE PARAMETER FILES 24

T
y
p
ic

al
p
re

se
n
ta

ti
on

of
p
ar

am
et

er
s

in
ou

tp
u
t

an
d

lo
g

fi
le

s:

-
-
-
-

P
a
r
a
m
e
t
e
r
s

-
-
-
-

I
m
a
g
e

t
o

b
e

a
n
a
l
y
s
e
d
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
i
m
a
g
e
F
i
l
e
]

=
i
n
p
u
t
.
f
i
t
s

I
n
t
e
r
m
e
d
i
a
t
e

L
o
g
f
i
l
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
l
o
g
F
i
l
e
]

=
d
u
c
h
a
m
p
-
L
o
g
f
i
l
e
.
t
x
t

F
i
n
a
l

R
e
s
u
l
t
s

f
i
l
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
o
u
t
F
i
l
e
]

=
d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
t
x
t

S
p
e
c
t
r
u
m

f
i
l
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
s
p
e
c
t
r
a
F
i
l
e
]

=
d
u
c
h
a
m
p
-
S
p
e
c
t
r
a
.
p
s

0
t
h

M
o
m
e
n
t

M
a
p
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
m
o
m
e
n
t
M
a
p
]

=
d
u
c
h
a
m
p
-
M
o
m
e
n
t
M
a
p
.
p
s

D
e
t
e
c
t
i
o
n

M
a
p
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
d
e
t
e
c
t
i
o
n
M
a
p
]

=
d
u
c
h
a
m
p
-
D
e
t
e
c
t
i
o
n
M
a
p
.
p
s

S
a
v
i
n
g

r
e
c
o
n
s
t
r
u
c
t
e
d

c
u
b
e
?
.
.
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
o
u
t
p
u
t
r
e
c
o
n
]

=
f
a
l
s
e

S
a
v
i
n
g

r
e
s
i
d
u
a
l
s

f
r
o
m

r
e
c
o
n
s
t
r
u
c
t
i
o
n
?
.
.
[
f
l
a
g
o
u
t
p
u
t
r
e
s
i
d
]

=
f
a
l
s
e

-
-
-
-
-
-

S
e
a
r
c
h
i
n
g

f
o
r

N
e
g
a
t
i
v
e

f
e
a
t
u
r
e
s
?
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
N
e
g
a
t
i
v
e
]

=
f
a
l
s
e

F
i
x
i
n
g

B
l
a
n
k

P
i
x
e
l
s
?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
B
l
a
n
k
P
i
x
]

=
t
r
u
e

B
l
a
n
k

P
i
x
e
l

V
a
l
u
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

=
-
8
.
0
0
0
6
1

R
e
m
o
v
i
n
g

M
i
l
k
y

W
a
y

c
h
a
n
n
e
l
s
?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
M
W
]

=
t
r
u
e

M
i
l
k
y

W
a
y

C
h
a
n
n
e
l
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
m
i
n
M
W

-
m
a
x
M
W
]

=
7
5
-
1
1
2

B
e
a
m

S
i
z
e

(
p
i
x
e
l
s
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

=
1
0
.
1
7
8
8

R
e
m
o
v
i
n
g

b
a
s
e
l
i
n
e
s

b
e
f
o
r
e

s
e
a
r
c
h
?
.
.
.
.
.
.
.
.
.
[
f
l
a
g
B
a
s
e
l
i
n
e
]

=
f
a
l
s
e

M
i
n
i
m
u
m

#
P
i
x
e
l
s

i
n

a
d
e
t
e
c
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
m
i
n
P
i
x
]

=
2

M
i
n
i
m
u
m

#
C
h
a
n
n
e
l
s

i
n

a
d
e
t
e
c
t
i
o
n
.
.
.
.
.
.
.
.
.
.
[
m
i
n
C
h
a
n
n
e
l
s
]

=
3

G
r
o
w
i
n
g

o
b
j
e
c
t
s

a
f
t
e
r

d
e
t
e
c
t
i
o
n
?
.
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
G
r
o
w
t
h
]

=
f
a
l
s
e

U
s
i
n
g

A
T
r
o
u
s

r
e
c
o
n
s
t
r
u
c
t
i
o
n
?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
A
T
r
o
u
s
]

=
t
r
u
e

N
u
m
b
e
r

o
f

d
i
m
e
n
s
i
o
n
s

i
n

r
e
c
o
n
s
t
r
u
c
t
i
o
n
.
.
.
.
.
.
.
.
[
r
e
c
o
n
D
i
m
]

=
3

M
i
n
i
m
u
m

s
c
a
l
e

i
n

r
e
c
o
n
s
t
r
u
c
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
s
c
a
l
e
M
i
n
]

=
1

S
N
R

T
h
r
e
s
h
o
l
d

w
i
t
h
i
n

r
e
c
o
n
s
t
r
u
c
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.
[
s
n
r
R
e
c
o
n
]

=
4

F
i
l
t
e
r

b
e
i
n
g

u
s
e
d

f
o
r

r
e
c
o
n
s
t
r
u
c
t
i
o
n
.
.
.
.
.
.
.
.
[
f
i
l
t
e
r
C
o
d
e
]

=
1

(
B
3

s
p
l
i
n
e

f
u
n
c
t
i
o
n
)

U
s
i
n
g

F
D
R

a
n
a
l
y
s
i
s
?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
F
D
R
]

=
f
a
l
s
e

S
N
R

T
h
r
e
s
h
o
l
d
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
s
n
r
C
u
t
]

=
3

U
s
i
n
g

A
d
j
a
c
e
n
t
-
p
i
x
e
l

c
r
i
t
e
r
i
o
n
?
.
.
.
.
.
.
.
.
.
.
.
[
f
l
a
g
A
d
j
a
c
e
n
t
]

=
t
r
u
e

M
a
x
.

v
e
l
o
c
i
t
y

s
e
p
a
r
a
t
i
o
n

f
o
r

m
e
r
g
i
n
g
.
.
.
.
[
t
h
r
e
s
h
V
e
l
o
c
i
t
y
]

=
7

M
e
t
h
o
d

o
f

s
p
e
c
t
r
a
l

p
l
o
t
t
i
n
g
.
.
.
.
.
.
.
.
.
.
.
.
.
[
s
p
e
c
t
r
a
l
M
e
t
h
o
d
]

=
p
e
a
k

D EXAMPLE RESULTS FILE 25

D
E
x
a
m

p
le

re
su

lt
s

fi
le

T
h
is

th
e

ty
p
ic

al
co

n
te

n
t

of
an

ou
tp

u
t

fi
le

,
af

te
r

ru
n
n
in

g
D

u
ch

am
p

w
it

h
th

e
p
ar

am
et

er
s

il
lu

st
ra

te
d

on
th

e
p
re

v
io

u
s

p
ag

e.

R
e
s
u
l
t
s

o
f

t
h
e

\
d
u
c
h
a
m
p
\

s
o
u
r
c
e

f
i
n
d
e
r
:

T
u
e

M
a
y

2
3

1
4
:
5
1
:
3
8

2
0
0
6

-
-
-
-

P
a
r
a
m
e
t
e
r
s

-
-
-
-

(
.
.
.

o
m
i
t
t
e
d

f
o
r

c
l
a
r
i
t
y

-
-

s
e
e

p
r
e
v
i
o
u
s

p
a
g
e

f
o
r

e
x
a
m
p
l
e
s
.
.
.
)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
o
t
a
l

n
u
m
b
e
r

o
f

d
e
t
e
c
t
i
o
n
s

=
2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

O
b
j
#

N
a
m
e

X
Y

Z
R
A

D
E
C

V
E
L

w
_
R
A

w
_
D
E
C

w
_
V
E
L

F
_
i
n
t

F
_
p
e
a
k

X
1

X
2

Y
1

Y
2

Z
1

Z
2

N
p
i
x

F
l
a
g

[
k
m
/
s
]

[
a
r
c
m
i
n
]

[
a
r
c
m
i
n
]

[
k
m
/
s
]

[
J
y

k
m
/
s
]

[
J
y
/
b
e
a
m
]

[
p
i
x
]

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
J
0
6
1
8
-
2
5
3
2

3
0
.
2

8
6
.
0

1
1
3
.
3

0
6
:
1
8
:
1
2
.
5
4

-
2
5
:
3
2
:
4
4
.
7
9

2
0
8
.
5
0
2

4
5
.
1
7

3
4
.
6
1

2
6
.
3
8
3

2
4
.
3
9
4

0
.
3
5
0

2
5

3
5

8
2

9
0

1
1
2

1
1
4

1
3
7

E

2
J
0
6
0
9
-
2
1
5
6

5
9
.
5

1
4
0
.
6

1
1
4
.
6

0
6
:
0
9
:
1
9
.
6
6

-
2
1
:
5
6
:
3
1
.
2
0

2
2
5
.
5
7
2

4
4
.
3
9

3
1
.
4
7

6
5
.
9
5
7

1
6
.
1
2
8

0
.
2
1
3

5
5

6
5

1
3
7

1
4
4

1
1
3

1
1
8

1
5
3

3
J
0
5
4
5
-
2
1
4
3

1
4
1
.
2

1
4
3
.
2

1
1
4
.
8

0
5
:
4
5
:
5
1
.
7
1

-
2
1
:
4
3
:
3
6
.
2
0

2
2
8
.
4
7
0

1
9
.
6
1

1
6
.
6
6

2
6
.
3
8
3

2
.
4
1
2

0
.
0
9
0

1
3
9

1
4
3

1
4
2

1
4
5

1
1
4

1
1
6

2
9

4
J
0
6
1
7
-
2
6
3
3

3
3
.
3

7
0
.
8

1
1
5
.
6

0
6
:
1
7
:
2
5
.
5
2

-
2
6
:
3
3
:
3
3
.
8
3

2
3
8
.
7
3
6

6
5
.
0
2

3
0
.
1
0

2
6
.
3
8
3

9
.
7
7
6

0
.
1
1
7

2
6

4
1

6
8

7
5

1
1
5

1
1
7

1
0
4

E

5
J
0
6
0
1
-
2
5
0
0

8
6
.
2

9
4
.
9

1
1
7
.
9

0
6
:
0
1
:
3
9
.
5
4

-
2
5
:
0
0
:
3
2
.
4
6

2
6
9
.
4
1
9

2
7
.
9
9

2
4
.
0
2

2
6
.
3
8
3

3
.
9
2
0

0
.
1
2
4

8
3

8
9

9
2

9
7

1
1
7

1
1
9

4
4

6
J
0
6
0
2
-
2
5
4
7

8
4
.
0

8
3
.
1

1
1
8
.
0

0
6
:
0
2
:
1
8
.
2
9

-
2
5
:
4
7
:
3
1
.
6
9

2
7
0
.
3
1
9

2
0
.
0
1

1
9
.
9
9

2
6
.
3
8
3

2
.
9
9
9

0
.
1
1
8

8
2

8
6

8
1

8
5

1
1
7

1
1
9

3
4

7
J
0
5
4
7
-
2
4
4
8

1
3
3
.
0

9
7
.
2

1
1
8
.
7

0
5
:
4
7
:
5
2
.
5
3

-
2
4
:
4
8
:
3
8
.
1
6

2
7
9
.
1
1
3

1
9
.
7
2

1
2
.
5
4

2
6
.
3
8
3

1
.
4
7
4

0
.
0
7
4

1
3
1

1
3
5

9
6

9
8

1
1
8

1
2
0

2
1

8
J
0
6
0
6
-
2
7
1
9

7
1
.
1

6
0
.
0

1
2
1
.
3

0
6
:
0
6
:
1
0
.
9
9

-
2
7
:
1
9
:
4
8
.
6
1

3
1
4
.
0
9
0

5
2
.
3
6

3
9
.
5
9

3
9
.
5
7
4

1
4
.
2
6
8

0
.
1
5
0

6
5

7
7

5
5

6
4

1
2
0

1
2
3

1
5
4

9
J
0
6
1
1
-
2
1
3
7

5
2
.
4

1
4
5
.
3

1
6
2
.
5

0
6
:
1
1
:
2
0
.
9
2

-
2
1
:
3
7
:
2
9
.
5
7

8
5
7
.
9
5
5

3
2
.
3
9

2
3
.
4
9

1
1
8
.
7
2
2

4
3
.
1
7
8

0
.
4
1
0

4
9

5
6

1
4
2

1
4
7

1
5
8

1
6
7

2
6
5

E

1
0

J
0
6
0
0
-
2
8
5
9

8
9
.
7

3
5
.
3

2
0
2
.
4

0
6
:
0
0
:
3
4
.
0
8

-
2
8
:
5
9
:
0
0
.
4
3

1
3
8
3
.
1
6
0

2
3
.
9
3

2
4
.
1
0

1
7
1
.
4
8
7

2
4
.
4
3
9

0
.
1
7
3

8
7

9
2

3
3

3
8

1
9
6

2
0
9

2
7
1

1
1

J
0
5
5
8
-
2
6
3
8

9
5
.
4

7
0
.
3

2
2
3
.
1

0
5
:
5
8
:
5
3
.
0
3

-
2
6
:
3
8
:
4
5
.
9
1

1
6
5
6
.
1
4
0

1
1
.
9
3

1
2
.
0
7

9
2
.
3
3
9

1
.
0
4
5

0
.
0
6
3

9
4

9
6

6
9

7
1

2
2
0

2
2
7

1
8

1
2

J
0
6
1
7
-
2
7
2
3

3
4
.
7

5
8
.
3

2
2
7
.
4

0
6
:
1
7
:
0
7
.
0
7

-
2
7
:
2
3
:
5
0
.
6
5

1
7
1
2
.
8
6
8

1
6
.
7
5

2
3
.
5
3

2
9
0
.
2
0
9

8
.
5
2
9

0
.
0
9
3

3
3

3
6

5
6

6
1

2
1
5

2
3
7

1
1
8

1
3

J
0
5
5
8
-
2
5
2
5

9
5
.
8

8
8
.
6

2
3
1
.
7

0
5
:
5
8
:
4
9
.
2
7

-
2
5
:
2
5
:
3
3
.
6
0

1
7
7
0
.
1
3
4

2
7
.
8
7

2
4
.
1
6

2
3
7
.
4
4
4

1
2
.
8
6
3

0
.
1
1
5

9
2

9
8

8
6

9
1

2
2
1

2
3
9

1
7
5

1
4

J
0
6
0
0
-
2
1
4
1

8
8
.
8

1
4
4
.
4

2
3
2
.
5

0
6
:
0
0
:
5
4
.
0
2

-
2
1
:
4
1
:
5
7
.
0
6

1
7
8
0
.
1
8
8

2
7
.
9
6

2
4
.
1
3

2
2
4
.
2
5
2

3
0
.
7
4
3

0
.
1
6
6

8
6

9
2

1
4
2

1
4
7

2
2
2

2
3
9

3
4
4

E

1
5

J
0
6
1
5
-
2
6
3
4

4
0
.
0

7
0
.
8

2
3
2
.
6

0
6
:
1
5
:
2
5
.
5
0

-
2
6
:
3
4
:
2
0
.
0
4

1
7
8
2
.
2
1
4

1
2
.
4
4

1
5
.
6
9

5
2
.
7
6
5

2
.
0
8
4

0
.
0
6
8

3
9

4
1

6
9

7
2

2
3
1

2
3
5

3
1

1
6

J
0
6
0
4
-
2
6
0
6

7
6
.
0

7
8
.
4

2
3
3
.
0

0
6
:
0
4
:
4
1
.
1
3

-
2
6
:
0
6
:
2
1
.
1
9

1
7
8
7
.
2
2
6

2
4
.
1
3

2
3
.
8
7

2
1
1
.
0
6
1

2
3
.
5
6
3

0
.
1
5
5

7
3

7
8

7
6

8
1

2
2
5

2
4
1

2
7
8

1
7

J
0
6
0
1
-
2
3
4
0

8
7
.
9

1
1
4
.
9

2
3
5
.
8

0
6
:
0
1
:
0
8
.
8
3

-
2
3
:
4
0
:
1
9
.
3
7

1
8
2
4
.
1
2
2

3
1
.
9
5

2
8
.
0
9

2
3
7
.
4
4
4

8
2
.
3
8
0

0
.
2
9
7

8
5

9
2

1
1
2

1
1
8

2
2
7

2
4
5

6
4
7

1
8

J
0
6
1
5
-
2
2
3
5

3
8
.
2

1
3
0
.
5

2
5
4
.
5

0
6
:
1
5
:
3
2
.
0
9

-
2
2
:
3
5
:
3
7
.
2
4

2
0
7
0
.
9
3
4

1
2
.
2
9

1
1
.
7
0

1
0
5
.
5
3
1

1
.
5
5
5

0
.
0
7
0

3
7

3
9

1
2
9

1
3
1

2
4
9

2
5
7

2
4

1
9

J
0
6
1
7
-
2
3
0
5

3
1
.
4

1
2
2
.
8

2
5
8
.
1

0
6
:
1
7
:
3
3
.
4
5

-
2
3
:
0
5
:
2
8
.
9
4

2
1
1
8
.
7
5
2

1
2
.
3
4

1
1
.
6
5

2
6
.
3
8
3

1
.
0
2
2

0
.
0
6
2

3
0

3
2

1
2
2

1
2
4

2
5
7

2
5
9

1
6

2
0

J
0
6
1
2
-
2
1
4
9

4
9
.
6

1
4
2
.
2

2
7
0
.
3

0
6
:
1
2
:
1
1
.
0
4

-
2
1
:
4
9
:
2
9
.
7
2

2
2
7
9
.
9
2
6

1
6
.
2
7

1
5
.
7
3

3
9
5
.
7
4
0

1
5
.
1
5
6

0
.
1
0
1

4
8

5
1

1
4
1

1
4
4

2
5
7

2
8
7

2
0
4

2
1

J
0
6
1
6
-
2
1
3
3

3
5
.
3

1
4
6
.
0

3
0
0
.
6

0
6
:
1
6
:
1
5
.
7
8

-
2
1
:
3
3
:
0
9
.
6
9

2
6
7
9
.
1
4
8

2
0
.
2
2

7
.
4
7

2
2
4
.
2
5
2

3
.
0
1
4

0
.
1
2
7

3
3

3
7

1
4
5

1
4
6

2
9
4

3
1
1

2
8

E

2
2

J
0
5
5
5
-
2
9
5
6

1
0
7
.
3

2
0
.
9

3
6
7
.
6

0
5
:
5
5
:
0
8
.
0
2

-
2
9
:
5
6
:
0
9
.
0
8

3
5
6
2
.
2
3
6

1
9
.
7
1

2
0
.
3
0

3
9
.
5
7
4

5
.
8
9
1

0
.
1
6
9

1
0
5

1
0
9

1
9

2
3

3
6
6

3
6
9

5
8

2
3

J
0
5
5
7
-
2
2
4
6

9
9
.
8

1
2
8
.
2

4
3
4
.
0

0
5
:
5
7
:
4
3
.
7
7

-
2
2
:
4
6
:
4
2
.
9
5

4
4
3
8
.
7
7
6

1
1
.
8
8

1
6
.
1
2

1
0
5
.
5
3
1

1
.
7
0
3

0
.
1
6
7

9
9

1
0
1

1
2
7

1
3
0

4
3
0

4
3
8

1
7

N

2
4

J
0
6
1
6
-
2
6
4
8

3
8
.
1

6
7
.
2

5
4
6
.
8

0
6
:
1
6
:
0
2
.
1
0

-
2
6
:
4
8
:
3
5
.
4
9

5
9
2
6
.
4
6
4

1
2
.
3
5

1
1
.
6
7

2
6
.
3
8
3

1
.
2
7
6

0
.
0
6
4

3
7

3
9

6
6

6
8

5
4
6

5
4
8

1
8

2
5

J
0
5
5
2
-
2
9
1
6

1
1
7
.
0

3
0
.
5

7
2
7
.
0

0
5
:
5
2
:
1
3
.
6
4

-
2
9
:
1
6
:
5
8
.
0
2

8
3
0
3
.
9
5
2

1
1
.
5
9

2
0
.
2
5

3
0
3
.
4
0
0

3
5
.
5
2
3

0
.
4
7
9

1
1
6

1
1
8

2
8

3
2

7
1
6

7
3
9

1
1
1

N
ot

e
th

at
th

e
w

id
th

of
th

e
ta

b
le

ca
n

m
ak

e
it

h
ar

d
to

re
ad

.
A

go
o
d

tr
ic

k
fo

r
th

os
e

u
si

n
g

U
N

IX
/L

in
u
x

is
to

m
ak

e
u
se

of
th

e
a
2
p
s

co
m

m
an

d
.

T
h
e

fo
ll
ow

in
g

w
or

k
s

w
el

l,
p
ro

d
u
ci

n
g

a
p
os

ts
cr

ip
t

fi
le

r
e
s
u
l
t
s
.
p
s
:

a
2
p
s

-
1

-
r

-
f
8

-
o

d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
p
s

d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
t
x
t

E EXAMPLE VOTABLE OUTPUT 26

E
E
x
a
m

p
le

V
O

T
a
b
le

o
u
tp

u
t

T
h
is

is
p
ar

t
of

th
e

V
O

T
ab

le
,
in

X
M

L
fo

rm
at

,
co

rr
es

p
on

d
in

g
to

th
e

ou
tp

u
t

fi
le

in
A

p
p
en

d
ix

D
(t

h
e

in
d
en

ta
ti

on
h
as

b
ee

n
re

m
ov

ed
to

m
ak

e
it

fi
t

on
th

e
p
ag

e)
.

<
?
x
m
l

v
e
r
s
i
o
n
=
"
1
.
0
"
?
>

<
V
O
T
A
B
L
E

v
e
r
s
i
o
n
=
"
1
.
1
"

x
m
l
n
s
:
x
s
i
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
-
i
n
s
t
a
n
c
e
"

x
s
i
:
n
o
N
a
m
e
s
p
a
c
e
S
c
h
e
m
a
L
o
c
a
t
i
o
n
=
"
h
t
t
p
:
/
/
w
w
w
.
i
v
o
a
.
n
e
t
/
x
m
l
/
V
O
T
a
b
l
e
/
V
O
T
a
b
l
e
/
v
1
.
1
"
>

<
C
O
O
S
Y
S

I
D
=
"
J
2
0
0
0
"

e
q
u
i
n
o
x
=
"
J
2
0
0
0
.
"

e
p
o
c
h
=
"
J
2
0
0
0
.
"

s
y
s
t
e
m
=
"
e
q
_
F
K
5
"
/
>

<
R
E
S
O
U
R
C
E

n
a
m
e
=
"
D
u
c
h
a
m
p

O
u
t
p
u
t
"
>

<
T
A
B
L
E

n
a
m
e
=
"
D
e
t
e
c
t
i
o
n
s
"
>

<
D
E
S
C
R
I
P
T
I
O
N
>
D
e
t
e
c
t
e
d

s
o
u
r
c
e
s

a
n
d

p
a
r
a
m
e
t
e
r
s

f
r
o
m

r
u
n
n
i
n
g

t
h
e

D
u
c
h
a
m
p

s
o
u
r
c
e

f
i
n
d
e
r
.
<
/
D
E
S
C
R
I
P
T
I
O
N
>

<
P
A
R
A
M

n
a
m
e
=
"
F
I
T
S

f
i
l
e
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
f
i
l
e
;
m
e
t
a
.
f
i
t
s
"

v
a
l
u
e
=
"
/
D
A
T
A
/
S
I
T
A
R
_
1
/
w
h
i
5
5
0
/
c
u
b
e
s
/
H
2
0
1
_
a
b
c
d
e
_
l
u
t
h
e
r
_
c
h
o
p
.
f
i
t
s
"
/
>

<
P
A
R
A
M

n
a
m
e
=
"
T
h
r
e
s
h
o
l
d
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

u
c
d
=
"
s
t
a
t
.
s
n
r
"

v
a
l
u
e
=
"
2
.
5
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

n
o
t
e
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
n
o
t
e
"

v
a
l
u
e
=
"
T
h
e

a
t
r
o
u
s

r
e
c
o
n
s
t
r
u
c
t
i
o
n

m
e
t
h
o
d

w
a
s

u
s
e
d
,

w
i
t
h

t
h
e

f
o
l
l
o
w
i
n
g

p
a
r
a
m
e
t
e
r
s
.
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

D
i
m
e
n
s
i
o
n
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"

u
c
d
=
"
m
e
t
a
.
c
o
d
e
;
s
t
a
t
"

v
a
l
u
e
=
"
3
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

C
u
t
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

u
c
d
=
"
s
t
a
t
.
s
n
r
"

v
a
l
u
e
=
"
4
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

M
i
n
i
m
u
m

S
c
a
l
e
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"

u
c
d
=
"
s
t
a
t
.
p
a
r
a
m
"

v
a
l
u
e
=
"
1
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

F
i
l
t
e
r
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
c
o
d
e
;
s
t
a
t
"

v
a
l
u
e
=
"
B
3

s
p
l
i
n
e

f
u
n
c
t
i
o
n
"
>

<
F
I
E
L
D

n
a
m
e
=
"
I
D
"

I
D
=
"
c
o
l
1
"

u
c
d
=
"
m
e
t
a
.
i
d
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"

w
i
d
t
h
=
"
4
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
N
a
m
e
"

I
D
=
"
c
o
l
2
"

u
c
d
=
"
m
e
t
a
.
i
d
;
m
e
t
a
.
m
a
i
n
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

a
r
r
a
y
s
i
z
e
=
"
1
4
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
R
A
"

I
D
=
"
c
o
l
3
"

u
c
d
=
"
p
o
s
.
e
q
.
r
a
;
m
e
t
a
.
m
a
i
n
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
6
"

u
n
i
t
=
"
d
e
g
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
D
e
c
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
o
s
.
e
q
.
d
e
c
;
m
e
t
a
.
m
a
i
n
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
6
"

u
n
i
t
=
"
d
e
g
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
R
A
"

I
D
=
"
c
o
l
3
"

u
c
d
=
"
p
h
y
s
.
a
n
g
S
i
z
e
;
p
o
s
.
e
q
.
r
a
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
2
"

u
n
i
t
=
"
a
r
c
m
i
n
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
D
e
c
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
a
n
g
S
i
z
e
;
p
o
s
.
e
q
.
d
e
c
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
2
"

u
n
i
t
=
"
a
r
c
m
i
n
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
V
e
l
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
v
e
l
o
c
;
s
r
c
.
d
o
p
p
l
e
r
V
e
l
o
c
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
9
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
V
e
l
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
v
e
l
o
c
;
s
r
c
.
d
o
p
p
l
e
r
V
e
l
o
c
;
s
p
e
c
t
.
l
i
n
e
.
w
i
d
t
h
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
8
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
I
n
t
e
g
r
a
t
e
d
_
F
l
u
x
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
f
l
u
x
;
s
p
e
c
t
.
l
i
n
e
.
i
n
t
e
n
s
i
t
y
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
D
A
T
A
>

<
T
A
B
L
E
D
A
T
A
>

<
T
R
>

<
T
D
>

1
<
/
T
D
>
<
T
D
>

J
0
6
0
9
-
2
2
0
0
<
/
T
D
>
<
T
D
>

9
2
.
4
1
0
4
1
6
<
/
T
D
>
<
T
D
>
-
2
2
.
0
1
3
3
9
0
<
/
T
D
>
<
T
D
>

4
8
.
5
0
<
/
T
D
>
<
T
D
>

3
9
.
4
2
<
/
T
D
>
<
T
D
>

2
1
3
.
0
6
1
<
/
T
D
>
<
T
D
>

6
5
.
9
5
7
<
/
T
D
>
<
T
D
>

1
7
.
5
7
2
<
/
T
D
>

<
/
T
R
>

<
T
R
>

<
T
D
>

2
<
/
T
D
>
<
T
D
>

J
0
6
0
8
-
2
6
0
5
<
/
T
D
>
<
T
D
>

9
2
.
0
4
2
6
3
3
<
/
T
D
>
<
T
D
>
-
2
6
.
0
8
5
1
5
7
<
/
T
D
>
<
T
D
>

4
4
.
4
7
<
/
T
D
>
<
T
D
>

3
9
.
4
7
<
/
T
D
>
<
T
D
>

2
3
3
.
1
1
9
<
/
T
D
>
<
T
D
>

3
9
.
5
7
4
<
/
T
D
>
<
T
D
>

4
.
1
4
4
<
/
T
D
>

<
/
T
R
>

<
T
R
>

<
T
D
>

3
<
/
T
D
>
<
T
D
>

J
0
6
0
6
-
2
7
2
4
<
/
T
D
>
<
T
D
>

9
1
.
6
3
7
8
4
0
<
/
T
D
>
<
T
D
>
-
2
7
.
4
1
2
0
2
2
<
/
T
D
>
<
T
D
>

5
2
.
4
8
<
/
T
D
>
<
T
D
>

4
7
.
5
7
<
/
T
D
>
<
T
D
>

3
0
2
.
2
1
3
<
/
T
D
>
<
T
D
>

3
9
.
5
7
4
<
/
T
D
>
<
T
D
>

1
7
.
0
6
6
<
/
T
D
>

<
/
T
R
>

(
.
.
.

t
a
b
l
e

t
r
u
n
c
a
t
e
d

f
o
r

c
l
a
r
i
t
y

.
.
.
)

<
/
T
A
B
L
E
D
A
T
A
>

<
/
D
A
T
A
>

<
/
T
A
B
L
E
>

<
/
R
E
S
O
U
R
C
E
>

<
/
V
O
T
A
B
L
E
>

F EXAMPLE KARMA ANNOTATION FILE OUTPUT 27

F Example Karma Annotation File output

This is the format of the Karma Annotation file, showing the locations of the detected
objects. This can be loaded by the plotting tools of the Karma package (for instance,
kvis) as an overlay on the FITS file.

Duchamp Source Finder results for

cube /DATA/SITAR_1/whi550/cubes/H201_abcde_luther_chop.fits

COLOR RED

COORD W

CIRCLE 92.3376 -21.9475 0.403992

TEXT 92.3376 -21.9475 1

CIRCLE 91.9676 -26.0193 0.37034

TEXT 91.9676 -26.0193 2

CIRCLE 91.5621 -27.3459 0.437109

TEXT 91.5621 -27.3459 3

CIRCLE 92.8285 -21.6344 0.269914

TEXT 92.8285 -21.6344 4

CIRCLE 90.1381 -28.9838 0.234179

TEXT 90.1381 -28.9838 5

CIRCLE 89.72 -26.6513 0.132743

TEXT 89.72 -26.6513 6

CIRCLE 94.2743 -27.4003 0.195175

TEXT 94.2743 -27.4003 7

CIRCLE 92.2739 -21.6941 0.134538

TEXT 92.2739 -21.6941 8

CIRCLE 89.7133 -25.4259 0.232252

TEXT 89.7133 -25.4259 9

CIRCLE 90.2206 -21.6993 0.266247

TEXT 90.2206 -21.6993 10

CIRCLE 93.8581 -26.5766 0.163153

TEXT 93.8581 -26.5766 11

CIRCLE 91.176 -26.1064 0.234356

TEXT 91.176 -26.1064 12

CIRCLE 90.2844 -23.6716 0.299509

TEXT 90.2844 -23.6716 13

CIRCLE 93.8774 -22.581 0.130925

TEXT 93.8774 -22.581 14

CIRCLE 94.3882 -23.0934 0.137108

TEXT 94.3882 -23.0934 15

CIRCLE 93.0491 -21.8223 0.202928

TEXT 93.0491 -21.8223 16

CIRCLE 94.0685 -21.5603 0.168456

TEXT 94.0685 -21.5603 17

CIRCLE 86.0568 -27.6095 0.101113

TEXT 86.0568 -27.6095 18

CIRCLE 88.7932 -29.9453 0.202624

TEXT 88.7932 -29.9453 19

G ROBUST STATISTICS FOR A NORMAL DISTRIBUTION 28

G Robust statistics for a Normal distribution

The Normal, or Gaussian, distribution for mean µ and standard deviation σ can be written
as

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

When one has a purely Gaussian signal, it is straightforward to estimate σ by calcu-
lating the standard deviation (or rms) of the data. However, if there is a small amount
of signal present on top of Gaussian noise, and one wants to estimate the σ for the noise,
the presence of the large values from the signal can bias the estimator to higher values.

An alternative way is to use the median (m) and median absolute deviation from the
median (s) to estimate µ and σ. The median is the middle of the distribution, defined for
a continuous distribution by ∫ m

−∞
f(x)dx =

∫ ∞

m
f(x)dx.

From symmetry, we quickly see that for the continuous Normal distribution, m = µ. We
consider the case henceforth of µ = 0, without loss of generality.

To find s, we find the distribution of the absolute deviation from the median, and then
find the median of that distribution. This distribution is given by

g(x) = distribution of |x|
= f(x) + f(−x), x ≥ 0

=

√
2

πσ2
e−x2/2σ2

, x ≥ 0.

So, the median absolute deviation from the median, s, is given by∫ s

0
g(x)dx =

∫ ∞

s
g(x)dx.

Now,
∫∞
0 e−x2/2σ2

dx =
√

πσ2/2, and so
∫∞
s e−x2/2σ2

dx =
√

πσ2/2 −
∫ s
0 e−

x2

2σ2 dx. Hence, to

find s we simply solve the following equation (setting σ = 1 for simplicity – equivalent to
stating x and s in units of σ): ∫ s

0
e−x2/2dx −

√
π/8 = 0.

This is hard to solve analytically (no nice analytic solution exists for the finite integral that
I’m aware of), but straightforward to solve numerically, yielding the value of s = 0.6744888.
Thus, to estimate σ for a Normally distributed data set, one can calculate s, then divide
by 0.6744888 (or multiply by 1.4826042) to obtain the correct estimator.

Note that this is different to solutions quoted elsewhere, specifically in Meyer et al.
(2004), where the same robust estimator is used but with an incorrect conversion to

standard deviation – they assume σ = s
√

π/2. This, in fact, is the conversion used to
convert the mean absolute deviation from the mean to the standard deviation. This
means that the cube noise in the hipass catalogue (their parameter Rmscube) should be
18% larger than quoted.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE. 29

H How Gaussian noise changes with wavelet scale.

The key element in the wavelet reconstruction of an array is the thresholding of the
individual wavelet coefficient arrays. This is usually done by choosing a level to be some
number of standard deviations above the mean value.

However, since the wavelet arrays are produced by convolving the input array by an
increasingly large filter, the pixels in the coefficient arrays become increasingly correlated
as the scale of the filter increases. This results in the measured standard deviation from a
given coefficient array decreasing with increasing scale. To calculate this, we need to take
into account how many other pixels each pixel in the convolved array depends on.

To demonstrate, suppose we have a 1-D array with N pixel values given by Fi, i =
1, ..., N , and we convolve it with the B3-spline filter, defined by the set of coefficients
{1/16, 1/4, 3/8, 1/4, 1/16}. The flux of the ith pixel in the convolved array will be

F ′
i =

1

16
Fi−2 +

1

4
Fi−1 +

3

8
Fi +

1

4
Fi+1 +

1

16
Fi+2

and the flux of the corresponding pixel in the wavelet array will be

W ′
i = Fi − F ′

i =
−1

16
Fi−2 −

1

4
Fi−1 +

5

8
Fi −

1

4
Fi+1 −

1

16
Fi+2

Now, assuming each pixel has the same standard deviation σi = σ, we can work out the
standard deviation for the wavelet array:

σ′i = σ

√(
1

16

)2

+
(

1

4

)2

+
(

5

8

)2

+
(

1

4

)2

+
(

1

16

)2

= 0.72349 σ

Thus, the first scale wavelet coefficient array will have a standard deviation of 72.3% of
the input array. This procedure can be followed to calculate the necessary values for all
scales, dimensions and filters used by Duchamp.

Calculating these values is clearly a critical step in performing the reconstruction.
Starck & Murtagh (2002) did so by simulating data sets with Gaussian noise, taking
the wavelet transform, and measuring the value of σ for each scale. We take a different
approach, by calculating the scaling factors directly from the filter coefficients by taking
the wavelet transform of an array made up of a 1 in the central pixel and 0s everywhere
else. The scaling value is then derived by taking the square root of the sum (in quadrature)
of all the wavelet coefficient values at each scale. We give the scaling factors for the three
filters available to Duchamp on the following page. These values are hard-coded into
Duchamp, so no on-the-fly calculation of them is necessary.

Memory limitations prevent us from calculating factors for large scales, particularly
for the three-dimensional case (hence the – symbols in the tables). To calculate factors
for higher scales than those available, we note the following relationships apply for large
scales to a sufficient level of precision:

• 1-D: factor(scale i) = factor(scale i − 1)/
√

2.

• 2-D: factor(scale i) = factor(scale i − 1)/2.

• 1-D: factor(scale i) = factor(scale i − 1)/
√

8.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE. 30

• B3-Spline Function: {1/16, 1/4, 3/8, 1/4, 1/16}
Scale 1 dimension 2 dimension 3 dimension
1 0.723489806 0.890796310 0.956543592
2 0.285450405 0.200663851 0.120336499
3 0.177947535 0.0855075048 0.0349500154
4 0.122223156 0.0412474444 0.0118164242
5 0.0858113122 0.0204249666 0.00413233507
6 0.0605703043 0.0101897592 0.00145703714
7 0.0428107206 0.00509204670 0.000514791120
8 0.0302684024 0.00254566946 –
9 0.0214024008 0.00127279050 –
10 0.0151336781 0.000636389722 –
11 0.0107011079 0.000318194170 –
12 0.00756682272 – –
13 0.00535055108 – –

• Triangle Function: {1/4, 1/2, 1/4}
Scale 1 dimension 2 dimension 3 dimension
1 0.612372436 0.800390530 0.895954449
2 0.330718914 0.272878894 0.192033014
3 0.211947812 0.119779282 0.0576484078
4 0.145740298 0.0577664785 0.0194912393
5 0.102310944 0.0286163283 0.00681278387
6 0.0722128185 0.0142747506 0.00240175885
7 0.0510388224 0.00713319703 0.000848538128
8 0.0360857673 0.00356607618 0.000299949455
9 0.0255157615 0.00178297280 –
10 0.0180422389 0.000891478237 –
11 0.0127577667 0.000445738098 –
12 0.00902109930 0.000222868922 –
13 0.00637887978 – –

• Haar Wavelet: {0, 1/2, 1/2}
Scale 1 dimension 2 dimension 3 dimension
1 0.707167810 0.433012702 0.935414347
2 0.500000000 0.216506351 0.330718914
3 0.353553391 0.108253175 0.116926793
4 0.250000000 0.0541265877 0.0413398642
5 0.176776695 0.0270632939 0.0146158492
6 0.125000000 0.0135316469 0.00516748303

	Introduction and getting going quickly
	A summary of the execution steps
	Guide to terminology
	Why Duchamp?

	User Inputs
	What Duchamp is doing
	Image input
	Image modification
	Blank pixel removal
	Baseline removal
	Ignoring bright Milky Way emission

	Image reconstruction
	Algorithm
	Note on Statistics
	User control of reconstruction parameters

	Reconstruction I/O
	Searching the image
	Merging detected objects

	Outputs
	During execution
	Results
	Table of Results
	Other results lists
	Graphical output -- spectra
	Graphical output -- maps

	Notes and hints on the use of Duchamp
	Future Developments
	Obtaining and Installing Duchamp
	Available parameters
	Example parameter files
	Example results file
	Example VOTable output
	Example Karma Annotation File output
	Robust statistics for a Normal distribution
	How Gaussian noise changes with wavelet scale.

