VLBI MEASUREMENTS FOR FREQUENCY TRANSFER

Hiroshi Takiguchi\(^1\) (htaki@nict.go.jp), Yasuhiro Koyama\(^1\), Ryuichi Ichikawa\(^1\), Tadahiro Gotoh\(^1\), Asutoshi Ishii\(^{1,2,3}\), Thomas Hobiger\(^1\), and Mizuhiko Hosokawa\(^1\)

\(^1\) National Institute of Information and Communications Technology, \(^2\) Geographical Survey Institute, \(^3\) Advance Engineering Services Co., Ltd
Content

✓ Introduction
 » Why VLBI is required?
 » Activities at NICT
 » Previous study : Wettzell - Onsala

✓ Intercomparison between VLBI and other techniques
 » Can the VLBI measure the right time difference?
 ▪ Kashima34m - Kashima11m
 - Artificial change by Line Stretcher

✓ Conclusions
Introduction

✔ Development of frequency standard

- Atomic fountains

 2 × 10^{-15} @ a few days

- Optical clocks

 10^{-16} to 10^{-17} @ a few hours

Background

✔ Time and frequency transfer technique

- GPS Carrier Phase
 2 × 10^{-15} @ 1 day

- TWSTFT
 2-4 × 10^{-15} @ 1 day

- Long averaging period
- Insufficient accuracy

- Improvements of highly precise time and frequency transfer techniques are strongly desired

VLBI

NICT-CsF1
..... developing

NICT
optical clocks
..... developing

VLBI

NiCT
Kashima Space Research Center
Activities at NICT

1. Developing a compact VLBI system
 » MARBLE SYSTEM
 Multiple Antenna Radio-interferometry of Baseline Length Evaluation

 - Diameter 1.65m
 - S/X-band
 - Front-fed paraboloidal reflector
 - Az-El mounting
 - Max speed AzEl 5 deg/sec
 - Transportable
 by few person
 Collaborating with GSI

2. Verifying the ability of VLBI frequency transfer
 » to show the capability of the current VLBI system
 ▪ Intercomparison between VLBI and other techniques

This study
Previous study

Intercomparison: VLBI vs. GPS

1. Wettzell-Onsala
 - VLBI vs. GPS CP
 - IVS and IGS data

IGS: ○
IVS: □

GPS long period
(2007 91-105 15days, 106-124 19days)

 VLBI stability: follows a 1/τ law very closely

VLBI is more stable than GPS
surpassing the stability of atomic fountain at 10^3s

The geodetic VLBI technique has the potential for precise frequency transfer
Intercomparison: VLBI vs. other techniques

Kashima34m – Kashima11m 239m
Kashima11m – Koganei11m 109km

Kashima
Kashima Space
Research Center

Koganei/Tokyo
Headquarters

Koganei

VLBI
GPS

VLBI
GPS

TWSTFT
TEC (ETS-8)

VLBI
Kashima11m

VLBI
Kashima34m

GPS: kgni

GPS: ksmv

GPS: ks34

H-maser, DMTD

Please see the poser: JD06-p:21
Hosokawa et al., “Recent activities at NICT Space-Time Standards Group”
Can the VLBI measure the right time difference?

✔ **Kashima34m – Kashima11m**

» Artificial time difference change
 ▪ using **Line Stretcher**

» Intercomparison between VLBI, GPS and DMTD

DMTD

6x10^{-12}@1s (6ps)
Differences with the normal observation

✅ Normal Geodetic VLBI

» Observation
 - multiple sources
 - antenna slew time
 - different scan time
 - 24 hours

» Data Analysis
 - estimate
e clock parameter
atmospheric delay
station coordinates

✅ This study

» Observation
 - one source: 3C84
 - no antenna slew time
 - same scan time
 - a few hours

» Data Analysis
 - estimate only
clock parameter
atmospheric delay:
short baseline, one source
station coordinates:
fixed to a-priori coordinates
Data analysis

✓ VLBI
 » CALC/SOLVE
 » single baseline
 » S/X ionosphere-free linear combination
 ▪ clock offset / 10sec

vs. DMTD Time Difference / 1sec

✓ GPS
 » NR Canada’s PPP
 ▪ IGS Rapid Orbit & Clock
 » Precise Point Positioning
 ▪ satellite clock interpolation
 ▪ clock offset / 30sec

» Time Defference
 clock offset A – clock offset B / 30sec
GPS vs. DMTD

large difference opposite sense

Line Stretcher
A B

<table>
<thead>
<tr>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after removing offsets
VLBI vs. GPS and DMTD

After removing offsets, there is a good agreement between the measurements.
Artificial change

- VLBI vs. DMTD: good agreement (<10ps)
- GPS vs. DMTD: sometimes, opposite sense

Other parts

- VLBI vs. DMTD: good agreement (<50ps) for short time range
 larger difference for longer time range due to the effect of atmospheric variation
- GPS vs. DMTD: good agreement

Can the VLBI measure the right time difference?

YES
Conclusions

✓ Can the VLBI measure right time difference?

» VLBI vs. GPS CP and DMTD

» Artificial change
 - VLBI vs. DMTD: good agreement (<10ps)
 - GPS vs. DMTD: sometimes, opposite sense

» The geodetic VLBI technique can measure the right time difference.
Acknowledgements

IVS and IGS
for the high quality products
GSFC, JPL, NRC Canada
for VLBI and GPS analysis software

Thank you very much for your attention.