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We are discussing:We are discussing:

� Clock systems
� Clock Performance
� Clock Stability
� Pulsar Clock
� Timing Noise 
� Timing Model
� Timing Residuals and Parameter’
Estimates

� Stability of Pulsar Clock
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What is Clock?What is Clock?

A clock is an instrument

used for indicating and 

maintaining the time and

passage thereof.
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A Typical ManA Typical Man--made Clock Systemmade Clock System
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Pulsar Clock Pulsar Clock 

SystemSystem

PulsarPulsar’’s Spins Spin
Radio AntennaRadio Antenna

Gravitational Waves Gravitational Waves 

from from 

binary stars ;binary stars ;

Stochastic Stochastic 

cosmological GW cosmological GW 

background ;background ;

Flybys of stars inFlybys of stars in

Globular clusters;Globular clusters;

other sourcesother sources
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Observatory Clock Observatory Clock -- UTCUTC
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Clock PerformanceClock Performance

� The quality of a clock is not dependent 
upon its error or its rate

� It is the rate variations from interval to 
interval which determine the quality

� If these variations are irregular then the 
clock's behavior can only be described 
statistically

� If the rate changes systematically,  
then we talk about a drift of this clock. 
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Clock StabilityClock Stability

� Ideal Clock

� Laboratory Clock
� Quartz
� Cesium  UTC
� Others

� Astronomical Clock
� Earth UT
� Solar System  ET
� Pulsar  PT
� Binary pulsar  BPT
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σ−τ diagram



Pulsar Clock Performance Pulsar Clock Performance 
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( )
If phase connection could be maintained 

we could count the pulses unambiguously , 

then the precision in the measurement of 

the rotational period would increases linearly with time.

In this case, an erro  

 

  

-12

-17

r in the period of 10  s after one hour 

translates into an error of 10  s after ten years.

This uncertainty is further divided by the square root 

of the number of rotational phase measurements.

This means that some pulsar periods can be determined to

14 significant decimal places or more!

Allan VarianceAllan Variance

versus timeversus time



PulsarPulsar’’s Slow Downs Slow Down

�� However, rotational periods are not constant. However, rotational periods are not constant. 

For every single pulsar in the Galactic disk, the pulse For every single pulsar in the Galactic disk, the pulse 

period is observed to increase with time, dP/dt > 0period is observed to increase with time, dP/dt > 0

�� This increase is normally linear with time This increase is normally linear with time 

�� Therefore, the uncertainty of dP/dt is proportional to 1/TTherefore, the uncertainty of dP/dt is proportional to 1/TEE

�� For most pulsars, this effect is relatively small. For most pulsars, this effect is relatively small. 
Measurements have to be made for more than one year to Measurements have to be made for more than one year to 
decouple the annual (nearly sinusoidal) effect of the Earthdecouple the annual (nearly sinusoidal) effect of the Earth’’s s 
motion on the TOAs from the quadratic effect of dP/dt on motion on the TOAs from the quadratic effect of dP/dt on 
the TOAs.the TOAs.
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Glitches and Intrinsic NoiseGlitches and Intrinsic Noise

� Most pulsars show significant departures 
from simple, uniformly slowing rotation. The 
two main departures are:

◦ Glitches. This corresponds to star quakes, caused 
by a sudden change in the configuration of the 
magnetic field or a sudden unpinning of quantum 
vortices from pulsar’s crust.

◦ Intrinsic noise. The origin of this phenomenon is 
mostly related to the stochastic behavior of the 
magnetic field torque.
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Binary Pulsar TimingBinary Pulsar Timing

� Having a pulsar clock in a binary system allows us to 
measure the range relative to the center of mass of the 
binary, normally with a precision of the order of 1 km or 
better!

� This makes pulsar timing thousands of times more precise 
for measuring orbital parameters of the binary than any 
other astronomical technique.

� Binary pulsars are in many cases “clean” in the sense that 
their orbital dynamics is driven primarily by equations of 
general relativity 

� This is the fundamental reason why the binary pulsars are 
superior astrophysical and metrological tools.
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Timing Noise ModelTiming Noise Model

� Stability and accuracy of pulsar’s clock 
depend on the noise presents in
• Environment and lab clock 
• Pulsar’s interior and magnetic field
• Signal propagation delay

� Timing noise is generally red  with spectrum 
S(f) ~              , so coherence times are 
generally long.

� Normally, the noise consists of stationary and 
non-stationary components. Both must be 
analyzed!
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PowerPower--Law Noise SpectraLaw Noise Spectra
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Ergodicity ProblemErgodicity Problem

Pulsar timing 
have access to 
only one 
realization of 
stochastic 
process. How to 
evaluate an 
ensemble 
average? Is it 
equivalent to the 
time average?
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Timeline of noise and observationsTimeline of noise and observations

August 7, 2009
XXVII GENERAL ASSEMBLY IAU  
Rio de Janeiro, Brazil 15

0t 0=t t t + τ+ τ+ τ+ τ

Noise 
originates

Observation
begins

Observation 
at time t

Observation 
at time t+τ

Observation 
ends

The noise is a stochastic process εεεε(t) that is characterized by 
a set of multipole moments. The second multipole is the 
auto-covariance function:   

Standard assumption:                      - stationary, no memory 

 
0 0t tR (t, τ) =< ε(t) ε(t + τ) >

0tR (t,τ) = R(τ)

T
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Timing Model Timing Model 
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Celestial Celestial 

MechanicsMechanics

of Binary Pulsarsof Binary Pulsars

Damour-Deruelle 1982

Kopeikin 1985,1986 PhD

Schäfer 1985
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Fokker-Plank force
due to GW background?
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Orbital ParameterizationsOrbital Parameterizations

◦ Blandford-Teukolsky
◦ Epstein-Haugan
◦ Brumberg
◦ Damour-Deruelle

To observer
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Other parameterizations:

Klioner & Kopeikin, 
ApJ, 427, 951 (1994)
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Timing ResidualsTiming Residuals
(Kopeikin 1997, 1999; Kopeikin & Potapov 2004)(Kopeikin 1997, 1999; Kopeikin & Potapov 2004)
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Parameter EstimatesParameter Estimates
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Filter Function and ResidualsFilter Function and Residuals
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Statistics for evaluation of Statistics for evaluation of 

stability of PT and BPTstability of PT and BPT

August 7, 2009
XXVII GENERAL ASSEMBLY IAU  
Rio de Janeiro, Brazil 22

2

2

2b

b

n

n

δν σ
ν

δν σ
ν

δ σ

= ⇒ =

= ⇒ =

= ⇒ =

y

z

v

y y

z z

v v

&&
Modified Allan variance
for rotational frequency
(Matsakis et al  1997)

Idealized Allan variance 
for orbital  frequency 

Idealized Allan variance
for rotational frequency



Comparison of various statisticsComparison of various statistics
(Ilyasov, Kopeikin, Rodin, Astron. Letters 1997)(Ilyasov, Kopeikin, Rodin, Astron. Letters 1997)
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SigmaSigma--Tau Diagram for PT and BPTTau Diagram for PT and BPT
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Stability of PT versus BPTStability of PT versus BPT
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20 2 12.4 10 g bP x Hσ − −= × Ωv Floor for GW bacground

Ilyasov, Kopeikin, Rodin 1997



ConclusionsConclusions

� Pulsar timing red noise is highly desirable to 
include to timing models;

� The most optimal red-noise parameter 
estimators should be worked out and studied;

� Sigma-z and sigma-v statistics are informative 
metrological and astrophysical  instruments 
(especially in study of GW);

� Millisecond and binary pulsars are excellent 
astronomical time-keepers on large time 
intervals (like a decade and longer);

� Future prospects – pulsar timing array with an 
ensemble of pulsars uniformly distributed over 
the sky – look very promising (JD6 talks by  
Manchester, Rodin, and others)
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