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Stability of Pulsar Clock
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IWe are discus



A clock is an instrument
used for indicating and
maintaining the time and
passage thereof.

What Is Clock?
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Pulsar’s Spin
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The quality of a clock is not dependent
upon its error or its rate

It is the rate variations from interval to
interval which determine the quality

If these variations are irregular then the
clock's behavior can only be described
statistically

If the rate changes systematically,
then we talk about a drift of this clock.

gClock Performance
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Signa Tau Diagram
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|f phaseconnection could bemaintained
(wecould count thepulsesunambiguously),

then theprecison in themeasurement of
therotational period would increaseslinearly with time.

Inthiscase, anerror intheperiod of 10™ s after onehour
trandatesintoanerror of 10" s after tenyears.

Thisuncertainty is further divided by thesquareroot
of thenumber of rotational phasemeasurements.

Thismeansthat somepulsar periodscan bedetermined to
14 9gnificant decimal placesor moré

Pulsar Clock Performance



> However, rotational periods are not constant.

For every single pulsar in the Galactic disk, the pulse
period is observed to increase with time, dP/dt > 0

> This increase is normally linear with time
» Therefore, the uncertainty of dP/dt is proportional to 1/T?2

> For most pulsars, this effect is relatively small.
Measurements have to be made for more than one year to
decouple the annual (nearly sinusoidal) effect of the Earth’s
rrr:otjlgngn the TOAs from the quadratic effect of dP/dt on
the S.
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Pulsar's Siow Down
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Most pulsars show significant departures
from simple, uniformly slowing rotation. The
two main departures are:

This corresponds to star quakes, caused
by a sudden change in the configuration of the
magnetic field or a sudden unpinning of quantum
vortices from pulsar’s crust.

The origin of this phenomenon is
mostly related to the stochastic behavior of the
magnetic field torque.

Slitches and Intrinsic Noilse



Having a pulsar clock in a binary system allows us to

measure the range relative to the center of mass of the

Binary, normally with a precision of the order of 1 km or
etter!

This makes pulsar timing thousands of times more precise
for measuring orbital parameters of the binary than any
other astronomical technique.

Binary pulsars are in many cases “clean” in the sense that
their orbital dynamics is driven primarily by equations of
general relativity

This is the fundamental reason why the binary pulsars are
superior astrophysical and metrological tools.

Sinary Pulsar Timing



Stability and accuracy of pulsar’s clock
depend on the noise presents in
Environment and lab clock
Pulsar’s interior and magnetic field
Signal propagation delay

Timing noise is generally red with spectrum

S(f) ~f™? (a>0), so coherence times are
generally long.

Normally, the noise consists of stationary and

non-stationary components. Both must be
analyzed!

Timing Noise Model
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Pulsar timing
have access to
only one
realization of
stochastic
process. How to
evaluate an
ensemble
average? Is it
eqUivaIent to the ) 1] III.I1 III.IE III.IS III.Ifl III.IE III.IE III.IF" III.IB III.IB 1
time average?

Ergodicity Problem



Noise Observation Observation Observation Observation
originates begins attimet attime t+1 ends

The noise is a stochastic process g(t) that is characterized by
a set of multipole moments. The second multipole is the
auto-covariance function: R, (t,t) =<g(t) gt + 1) >_

Standard assumption: R, (t,7) =R(z) - stationary, no memory

Fimeline of noise and observations
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Osculating elements:

r(t) = a(t)[1-e(t) cosE],

n(t-T,) = E—e(t)sSnE-Al(t),

H=f+a)(t),
e e
2 o

Other parameterizations:

r(t)=a,[1-¢ cosU],

n(t-T,)=U —esinU,

9:e+(1+k)/s,%, k=2,
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Oornital Paramete

Gravitational
radiation

+

Schklovski’s
effect

+

other kinematics

To observer

Klioner & Kopeikin,
Apl, 427, 951 (1994)

Blandford-Teukolsky
Epstein-Haugan
Brumberg
Damour-Deruelle
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r(t, P P, pk) = &(t)
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True values of
fitting parameters

r(t, ;s Do B ) = £(1) —Zk_lﬁa% (t. B}, P i) +O(£°)

Estimated values of Fitting functions
fitting parameters

where B, =0p, =p,—p, ,ad ¢, (t, DLy Poeees pﬁ)

fiming Residuals

(Kopeikin 1997, 1999; Kopeikin & Potapov 2004 )
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Parameter Estim
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V2 Idealized Allan variance
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" evaluation of
f and BPT
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sigma-Tau Diagram for PT and BEE
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Pulsar timing red noise is highly desirable to
include to timing models;

The most optimal red-noise parameter
estimators should be worked out and studied;
Sigma-z and sigma-v statistics are informative
metrological and astrophysical instruments
(especially in study of GW);

Millisecond and binary pulsars are excellent
astronomical time-keepers on large time
intervals (like a decade and longer);

Future prospects — pulsar timing array with an
ensemble of pulsars uniformly distributed over
the sky — look very promising (JD6 talks by
Manchester, Rodin, and others)

gonclusions



