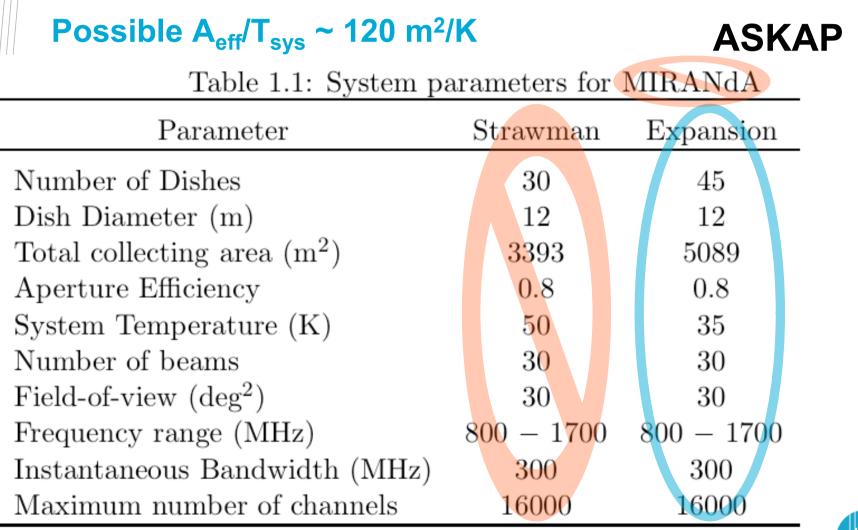


SKA Key Science Projects

Five projects have been identified by the radio astronomy community as being the key science drivers for the SKA:

- Cradle of Life
- Probing the Dark Ages
- <u>The origin and evolution of Cosmic Magnetism</u>
- Strong field tests of gravity using pulsars and black holes
- Galaxy evolution, cosmology and dark energy

Last 3 of 5 are driving force for <u>ASKAP</u>



PASA Summary now under review

Science With The Australian Square Kilometre Array Pathfinder

S. Johnston^A, M. Bailes^B, N. Bartel^C, C. Baugh^D, M. Bietenholz^C, C. Blake^B, R. Braun^A, J. Brown^E, S. Chatterjee^F, J. Darling^G, A. Deller^B, R. Dodson^H, P. Edwards^A, R. Ekers^A, S. Ellingsen^I, I. Feain^A, B. Gaensler^F, M. Haverkorn^J, G. Hobbs^A, A. Hopkins^F, C. Jackson^A, C. James^K, G. Joncas^L, V. Kaspi^M, V. Kilborn^B, B. Koribalski^A, R. Kothes^E, T. Landecker^N, E. Lenc^B, J. Lovel^I, J.-P. Macquart^O, R. Manchester^A, D. Matthews^P, N. McClure-Griffiths^A, R. Norris^A, U.-L. Pen^Q, C. Phillips^A, C. Power^B, R. Protheroe^K, E. Sadler^F, B. Schmidt^R, I. Stairs^S, L. Staveley-Smith^T, J. Stil^E, R. Taylor^E, S. Tingay^B, A. Tzioumis^A, M. Walker^U, J. Wall^S, M. Wolleben^N

Possible Specs.

ASKAP

Table 1.2: Sensitivity and survey speeds for MIRANdA	ivity and survey speeds for MIRANdA
--	-------------------------------------

Parameter	Strawman	Expansion
Continuum survey speed (300 MHz, 100 μ Jy)	250	$1150 \ \mathrm{deg^2/hr}$
Line survey speed (100 kHz, 5 mJy)	209	$960 \text{ deg}^2/\text{hr}$
Surface brightness survey speed (5 kHz, 1 K, $1'$)	18	$83 \text{ deg}^2/\text{hr}$
Point source sensitivity (1 MHz, 1 mJy)	1290	280 sec

ASKAP Science Surveys

HI emission surveys

- Detect > 10⁶ galaxies all sky with M* to z ~ 0.1 (cf Parkes HIPASS survey 4500 galaxies to z ~ 0.02)
- Deep surveys, small regions with M* to z ~ 0.4

HI absorption against background sources to z ~ 1

- Continuum and polarization surveys
 - 10^{7.8} sources to 10 μJy in parallel with the HI survey
 - 500,000 polarized sources and > 60,000 RMs
- OH megamasers to z~1
- Galactic/Magellanic/Local Volume HI emission surveys
- Pulsar survey, ~1000 new pulsars
- Transients and variability
 - IDVs, GRBs, all radio SNe to 50 Mpc
- Multiplexed VLBI on faint sources in wide FoV

ASKAP HI Surveys: Key science questions

- HI density evolution as a function of red-shift
 - Relation with star formation rate
- HI mass function for different environments / red-shifts / galaxy types possible with large statistical samples
- Clustering of HI galaxies versus red-shift
 - Underlying dark halo properties
 - Environmental influences

ASKAP HI Surveys

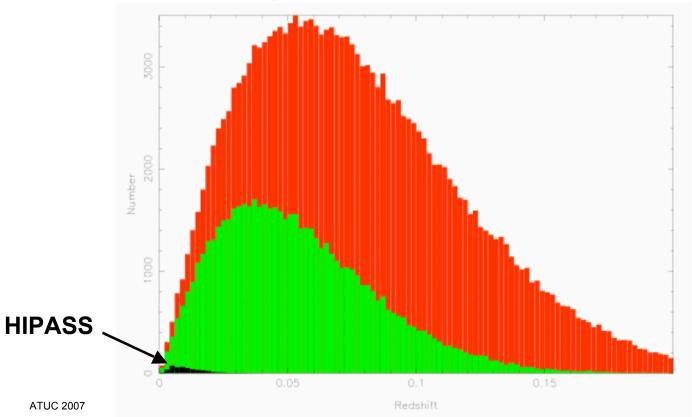
Shallow survey

- 1 year observing time, 1/2 sky coverage
 - Detects > 10⁶ galaxies to $z \sim 0.25$, M* to $z \sim 0.1$

Medium survey

- 1 year observing, 600 sq deg
 - Detects > 200,000 galaxies to z ~ 0.5, M* to z ~ 0.2

Deep survey


- 1 year observing, single pointing, 30 sq deg
 - Detects > 100,000 galaxies to z ~ 1, M* to z ~ 0.4

ASKAP HI Surveys

Shallow survey

- 1 year observing time, 1/2 sky coverage
 - Detects > 10⁶ galaxies to $z \sim 0.25$, M* to $z \sim 0.1$



ASKAP HI Surveys

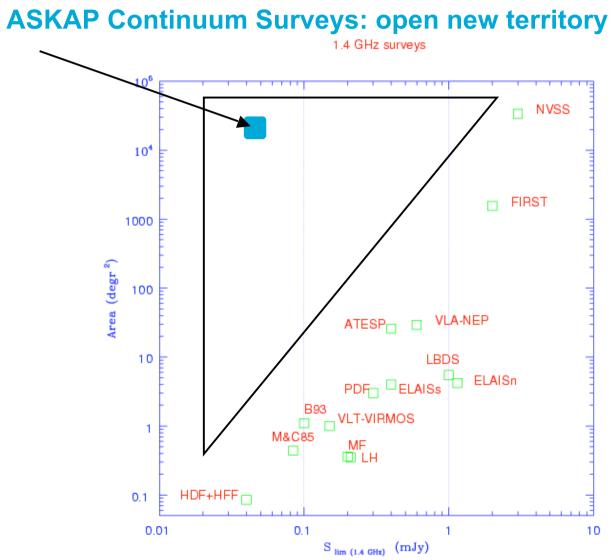
Deep survey

- 1 year observing, single pointing, 30 sq deg
 - Detects > 100,000 galaxies to $z \sim 1$, M* to $z \sim 0.4$

ASKAP Continuum Surveys

Compare NVSS survey (Condon et al. 1998)

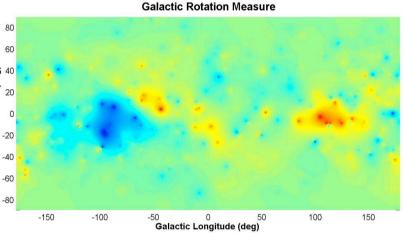
- 1.4 GHz, all-sky, 23s / point, 5-sigma detection of 2 mJy
- 75 days VLA time, 10⁶ objects, 45 arcsec resolution

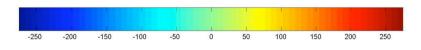

ASKAP surveys

- 1.4 GHz, all-sky, 75s / point, 5-sigma detection of 2 mJy
- Achieve in 1 day (every day(?)) with ASKAP !!!!
- All-sky RMS in 1 year is 9 μJy
- Polarization, RM-grid, galactic structure etc

Variable sky every day

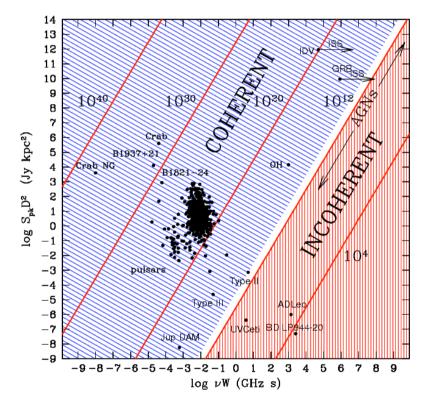
- 2% level for 100 mJy sources, 10% for 10 mJy sources
- cf MASIV (targeted) survey with the VLA


ASKAP Continuum Surveys: Polarimetry


- How are magnetic fields generated?
- Are they primordial?
- What is the strength of the B field in the IGM?
- How do B fields affect galaxy evolution?

ASKAP Continuum Surveys: Polarimetry

- Currently ~1200 extra-galactic RMs, ~300 pulsar RMs across the sky.
- ASKAP will yield ~ 60,000 ex-gal. RMs and ~ 2000 pulsar RMs, providing a source density of about 1/9 arcmin
 ASKAP will yield ~ 60,000 ex-gal. 1/9 arcmin
- Detailed 3-D magnetic tomography of Galaxy
- Possible detection of IGM B field and evolution with z


ASKAP Pulsar Surveys and Timing

- Perhaps 1000 new pulsars but surveys are strongly computing limited (need pulsar processing of 10⁵ pencil beams of 1 arcmin to fully tile 30 deg² telescope FOV)
- Trade-off of number of beams vs. flux sensitivity (determined by degree of central concentration of telescope configuration)
- If 120 m²/K available, then very competitive for timing since source location is known in advance

ASKAP Continuum Surveys: Transients

- Ultra-high energy particles
- Sun solar flares
- Planets magnetic flares
- Stars flare stars, brown dwarfs
- Pulsars normal, giant, AXPs, SGRs
- X-ray binaries, micro-quasars
- AGN
- Gamma-ray bursts
- Supernovae
- Aliens
- Scintillation
- New classes

Configuration Trade-offs

• Small ~ 500 m

- Best for pulsars and low surface brightness HI
- Medium ~ 2 km
 - Best for HI galaxy surveys (keep them unresolved)
- Large ~ 8 km
 - Best for deep continuum surveys (confusion limit)
- Reconfigurable (?)
 - Pickup and move (many) dishes on annual timescale
 - Eg. small => medium => large (simple => challenging)
 - Some cost penalty to set up multiple pads, but dominated by data transport and computing costs of largest configuration

Strong central concentration, but extends to 8 km

- ~Good for everything, but are 45 telescopes enough for (u,v) coverage on all scales?
- Simulations will address

ASKAP User Requirements Document

Define survey and analysis strategies and deliverables

- Need sufficient detail for implementation
- Need local "interpreter" for ASKAP software team

Topic

ATNF liaison

Science Working Group Lead

Extragalactic HI Extragalactic Cont./Polar. Ray Norris Galactic HI/Cont/Polar. Naomi McClure-Griffiths Sean Dougherty **Transients Pulsars VLBI**

Baerbel Koribalski Simon Johnston George Hobbs Tasso Tzioumis

Lister Staveley-Smith, Tom Oosterloo Ilana Feain, Jasper Wall, Russ Taylor **Simon Johnston Ingrid Stairs Steve Tingay**

• Timeline:

- Document in place by end 2007
- Resourcing of "software instruments" by mid-2008
- Work with community to resource all essential modes 2008+

ATUC 2007

Science with the Australian Telescope Network

ASKAP fully integrated with ATCA, Mopra, Parkes

Require 5 - 10 year forward look for all telescopes for cost-effective operational plan

• A year in a life of the Australian Telescope Network ...

• Timeline:

- Parkes "Science Day" was yesterday
- ATCA "Science Day" early-2008
- Integrate for implementation stage of Ops. plan mid-2008

