

Parkes Instrumentation Options

Ettore Carretti
CASS
25 October 2011

Framework

- Inputs from New Operation Model for Parkes:
 - To keep "The Dish" delivering cutting-edge science
 - Reduced staff support
 - Remote Operations
 - Focused on project requiring less support (e.g. Large projects)

- Considerations presented here are a starting point for discussion
- Inputs and feedback from community are essential.

Framework

INPUTS

- Minimal (or nil) local support
- Remote operations

IMPLICATIONS

- Increasing reliability
- Reducing complexity

Reducing complexity / increasing reliability:

- reducing the number of equipment (esp. in case of redundancy)
- phasing out old and little demanded receivers.
- remove the residual manual setups in between receiver changes
- allow full remote setup of equipment and observing modes offered
- Reducing number of receiver changes

PARKES RECEIVER FLEET

Receiver	Frequency	Remotely Operatab le	Perform. 1=poor, 5=good	Reliability 1=poor, 5=good	Usage (last 3yr)
MB-20	1.2-1.5 GHz	Y	5	5	54.4 %
10/50 cm	732 MHz 3.1 GHz	Y	5	5	16.4 %
Н-ОН	1.2-1.8 GHz	Sort of	5	5	5.5 % (now ~1%)
GALILEO	2.3 GHz	Sort of	5	5	4.6 % (now ~1%)
13 mm	16-26 GHz	Y	5	4	4.3 %
MARS	8.1-8.5 GHz	Sort of	5	5	2.4 %
Methanol 6	6 GHz	Sort of	3	3	2.4 %
Multi band (SX - C)	2.3+8.5GHz (SX) 5 GHz (C)	Sort of	2	2	1.4 %
Ku	12 GHz	Sort of	2/3	3-	0.4 %

RECEIVERS

- To reduce number of receiver changes
- Essential to give more reliability to the system (and reducing complexity of operations)
 - Most of the Fault Reports are just after a receiver change
 - System is complex
 - a few days after the receiver change usually everything run smoothly (exceptions possible!)

A possible strategy in two stages (long and short term)

A LONG TERM SOLUTION

- Ideal situation: no receiver changes at all
- How much room in Focus Cabin? Two platforms:
 - Platform #1 => One large array
 - Platform #2 => Two individual receivers
- Replace receiver fleet with two Ultra Wide Band Receivers (UWBR) and a PAF
- LONG TERM: 3-5+ years
- FUNDING TO BE PURSUED

A LONG TERM SOLUTION

- PAF:
 - At least 700-1800 MHz (possibly broader)
 - · funds currently actively pursued
- Receiver #1:
 - 0.7 4.0 GHz (see talk by D Manchester)
- Receiver #2
 - 4.0 15 GHz (26 GHz?)
 - ATCA's 4 12 GHz. Enough? To push development to > 12 GHz?
- Flexibility and agility (all bands always available)
- baseline for discussion.
- Details, freq ranges, and schedule to be assessed with Community inputs (also depending on funds and resources)

Long Term solution not in place for several years

- Short-Mid Term solution necessary
- Based on receiver performance and use (next two slides)

PARKES RECEIVER FLEET

Receiver	Frequency	Remotely Operatab le	Perform. 1=poor, 5=good	Reliability 1=poor, 5=good	Usage (last 3yr)
MB-20	1.2-1.5 GHz	Y	5	5	54.4 %
10/50 cm	732 MHz 3.1 GHz	Y	5	5	16.4 %
Н-ОН	1.2-1.8 GHz	Sort of	5	5	5.5 % (now ~1%)
GALILEO	2.3 GHz	Sort of	5	5	4.6 % (now ~1%)
13 mm	16-26 GHz	Y	5	4	4.3 %
MARS	8.1-8.5 GHz	Sort of	5	5	2.4 %
Methanol 6	6 GHz	Sort of	3	3	2.4 %
Multi band (SX - C)	2.3+8.5GHz (SX) 5 GHz (C)	Sort of	2	2	1.4 %
Ku	12 GHz	Sort of	2/3	3-	0.4 %

PARKES USE

Observation Type	Fractional observing time		
Pulsar	64.7 %		
Polarization & continuum	12.9 %		
VLBI	7.3 %		
HI	2.9 %		
Spectral lines (non HI)	4.6 %		
Geodynamic	1.5 %		
Others (exotic, askap,)	6.0 %		

- Most used receivers (by far)
 - MB-20
 - 10/50 cm
 - 10/50 required every some 3 weeks for PPTA
- New multibeam correlator: HIPSR. A revamp of HI surveys is likely in the next years.
- High frequency receivers follow: MARS, 13mm, METH6

- STANDARD RECEIVERS:
 - MB-20 + 10/50cm => to stay up most time
- Others receivers:
 - three possible scenarios

- Scenario #1: No receiver changes (not preferred)
 - Simplest and most reliable solution
 - Only science possible with MB-20 and 10/50cm (pulsar, HI, ...)
 - ... too limiting
- Scenario #2: 1 receiver change (+1) per semester (preferred)
 - MB-20 and 10/50cm most of the time
 - 3-4 weeks: 10/50cm out
 - 2 other receivers up to allow VLBI and other high frequency science
 - 2 receivers a semester (+ MB-20 & 10/50cm)
 - One VLBI session per semester, with 20cm + 2 high freq receivers
- Scenario #3: 2 receiver changes (+2) per semester (not preferred)
 - Similar to #2 but more flexible
 - Up to 4 other receivers scheduled a semester
 - To be assessed whether compatible with budget/resources needs

- Parkes Receiver Fleet to be reviewed
 - shorter time for maintenance
 - Only 2 (4) receivers available per semester

- => reducing number of receivers
- choice should be driven by
 - use (must stay up for several weeks => high request)
 - performance
 - reliability / age

• A POSSIBLE SCENARIO (according to the previous tables):

Online (To use)	Offline (Not to use unless highly ranked scientific projects request it)	To decommission
MARS Old Methanol 13mm	Galileo H-OH	Multiband (S/X - C) Ku-band

- Opinion and inputs from ATUC community required here
- N.B.: short term solution => long term will give all frequencies back

Reducing complexity between receiver changes

- Reducing complexity between receiver changes:
 - Reducing number of equipment
 - => the fewer the less support we need to provide
 - => eliminating redundancies
 - to eliminate residual manual reconfigurations in between receiver changes

BACKENDS

- Workhorses (to keep)
 - DFB3/4 (pulsar, polarization/continuum, spectrometer)
 - BPSR APSR (=> HIPSR)
 - MBCORR for multibeam observations (=> HIPSR)
 - VLBI: see a few slides ahead

- HIPSR:
 - new multibeam backend
 - Pulsar mode
 - Spectrometer mode (400 MHz, 16k channels)
 - Advanced development stage (first HI light achieved)

BACKENDS TO PHASE OUT

- AFB (see Douglas talk)
- MBCORR for individual beam observations:
 - require manual swapping of boards and rewiring of cables
 - Can be replaced by DFB3 (with better performances)
 - Some configurations with 4 MHz BW lost => 0.5 and 0.25 kHz resolution (but very little use, << 1%).
 Not completely true: might be recovered with HIPSR...
 - Little S/W development to be completed (to be given high priority)
 - Currently assessing whether to phase out on 1 April 2012

VLBI BACKENDS

- DAS
 - 20cm observations require conversion linear-to-circular pols
 - By an Hybrid: can be setup manually only
- Two options
- 1. To make the hybrid remotely settable (not recommended)
- 2. To migrate to DFB3 (preferred)
 - Circularisation can be done via F/W by DFB3
 - Broader BW: 1024 vs 64 MHz => room for future developments
 - further reduction of equipment to support
 - It is not new, the VLBI team is working on this since a few yrs
 - The project requires to be given high priority in the next 12 months

VLBI OPERATIONS

- Disk Swaps to be eliminated (both MK-V & DAS/DFB3)
 - Assessment on how much disk space is required to run an entire run without swaps.
 - MK-V case looks OK already.
 - Assessment required for DAS/DFB3
 - Increase the share of eVLBI time?
- No receiver changes during a VLBI session
 - One receiver change at the beginning of the session
 - Observations should be conducted with:
 - + 20cm
 - + 2 receivers installed at the start of the session

