| Targeted searches | Slow transients | Fast transients | Really fast transients | Technical considerations |
|-------------------|-----------------|-----------------|------------------------|--------------------------|
|                   |                 |                 |                        |                          |
|                   |                 |                 |                        |                          |

# Transients with Parkes

#### What it's good at, and how to make it better

Justin Bray

29 October, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Targeted searches | Slow transients | Fast transients<br>00 | Really fast transients<br>00 | Technical considerations |
|-------------------|-----------------|-----------------------|------------------------------|--------------------------|
| Contents          |                 |                       |                              |                          |

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Targeted searches
- Blind searches
  - Slow transients
  - Fast transients
  - Really fast transients
- Technical considerations

| ಂಂ  | 00 | 00 | 00 | 000000 |
|-----|----|----|----|--------|
| Λ Ι |    |    |    |        |

### Assumed receivers



single-pixel feed

- from suggestion by Dick Manchester
- 0.7–4.0 GHz
- $T_{
  m sys}\sim 25~
  m K$



Phased-Array Feed (PAF)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- developed for ASKAP
- 0.7–1.8 GHz
- $T_{
  m sys}\sim 50~
  m K$

Transients are typically less intense at higher frequencies.

| Targeted searches | Slow transients | Fast transients | Really fast transients | Technical considerations |
|-------------------|-----------------|-----------------|------------------------|--------------------------|
| ●○                | 00              | 00              | 00                     |                          |
| Targeted se       | earches         |                 |                        |                          |

Use cases:

- Monitoring likely/known transients
- Follow-up on non-radio transients

Science:

- stellar transients (brown dwarfs, flare stars)
- AGN outbursts
- X-ray binaries
- intraday variability
- maser flares
- GRB follow-up

Only point-source sensitivity matters:

$$S_{\min} = N_{\sigma} rac{1}{\sqrt{t_{\mathrm{obs}}\Delta 
u}} rac{2kT_{\mathrm{sys}}}{A_{\mathrm{eff}}}$$





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

| Targeted searches | Slow transients | Fast transients | Really fast transients | Technical considerations |
|-------------------|-----------------|-----------------|------------------------|--------------------------|
| 00                | ●○              | 00              | 00                     |                          |
| Blind search      | nes: Slow t     | ransients       |                        |                          |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transients slower than telescope dwell time, O(5 secs)Science: blind searches for

- stellar transients
- AGN outbursts
- orphan GRB afterglows

Figure of merit is survey speed:

 ${\rm FoV}/S_{\rm min}^2$ 





| Rlind searches           | Fast transients                  |                              |                          |
|--------------------------|----------------------------------|------------------------------|--------------------------|
| Targeted searches Slow t | transients Fast transients<br>●○ | Really fast transients<br>00 | Technical considerations |

Science:

- RRATs
- radio supernovae
- Lorimer bursts
- atmospheric transients (perytons?)

Cannot use standard interferometric imaging with arrays. Options:

- form tied-array beams
- sum antennas incoherently
- fly's-eye pointing
- others being explored (Bannister & Cornwell 2011)

No clear figure of merit (see Macquart 2011). Search sensitivity-FoV phase space.





| Targeted searches<br>00 | Slow transients | Fast transients<br>00 | Really fast transients<br>●○ | Technical considerations |
|-------------------------|-----------------|-----------------------|------------------------------|--------------------------|
| Blind search            | nes: Really     | fast transie          | nts                          |                          |

Pulses with inherent width O(nanosecs); smaller than array sizes. Science:

- cosmic ray air showers
- lunar particle cascades
- nano-giant pulses

Cannot use arrays together, except with tied-array beams. Signal scales with  $\Delta \nu$  instead of  $\sqrt{\Delta \nu}$  (coherent across band). Figure of merit:

 $\Delta 
u/\mathrm{SEFD}$  (and FoV)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

| Targeted searches | Slow transients | Fast transients | Really fast transients | Technical considerations |
|-------------------|-----------------|-----------------|------------------------|--------------------------|
| 00                |                 | 00              | 00                     | ●○○○○○                   |
| Triggering        |                 |                 |                        |                          |



As time resolution increases, so does data rate.

Cannot store all data.

- Need triggered detection.
- Need real-time processing.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Different from pulsar searches.





One-off fast transients look much like RFI. But: they appear in multiple beams.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

| Targeted searches<br>00 | Slow transients | Fast transients<br>00 | Really fast transients<br>00 | Technical considerations |  |
|-------------------------|-----------------|-----------------------|------------------------------|--------------------------|--|
| Anticoincidence         |                 |                       |                              |                          |  |



Omnidirectional feed external to dish, for RFI identification?

| Targeted searches<br>00 | Slow transients | Fast transients<br>00 | Really fast transients<br>00 | Technical considerations |
|-------------------------|-----------------|-----------------------|------------------------------|--------------------------|
| Conflicting             | technical re    | equirements           |                              |                          |

ASKAP PAFs may be interlaced/dithered to achieve flat field. Great for imaging; not so great for transients.

ASKAP PAF bands: 700–1200, 850–1440 and 1400–1800 MHz. On Parkes: separate beamformers? Makes transients difficult.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Targeted searches
 Slow transients
 Fast transients
 Really fast transients
 Technical considerations

 00
 00
 00
 00
 00
 00

# Non-standard PAF beams



Some experiments have different pointing requirements.

Lorimer bursts: reconstruction improved if beam is on target. Buffer individual PAF elements?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Targeted searches | Slow transients | Fast transients | Really fast transients | Technical considerations |
|-------------------|-----------------|-----------------|------------------------|--------------------------|
| 00                |                 | 00              | 00                     | ○○○○○●                   |
| Backend op        | otions          |                 |                        |                          |

For slow transients, backend requirements are as for continuum mapping.

For fast transients, options:

- Adaptable backend capable of implementing required processing for any conceivable experiment.
- No fast transients capability. Replace with the above in five years' time, when computing power is cheaper.
- Provide capacity for external groups to bring their own backends for particular experiments. (Where in the signal path?)

Harder for a PAF than for a single-pixel feed.

| Targeted searches<br>00 | Slow transients | Fast transients<br>00 | Really fast transients<br>00 | Technical considerations |
|-------------------------|-----------------|-----------------------|------------------------------|--------------------------|
| Conclusion              | 5               |                       |                              |                          |

- With new receivers, Parkes can explore new regions of transient phase space.
- For slow transients, arrays win. Parkes is better at fast transients.
- Signal-processing becomes harder as you go to shorter timescales.