Technolo gies for Radio Astronom Y

CSIRO Astronomy and Spacez Societace Facilities Program Director - Technologies April 2019

www.csiro.au

ATNF Technologies Capabilities

- Antennas & Receivers (Front-end) (~15): RF technologies (Feeds; OMTs; LNAs; RF Electronics; Cryogenic systems; Mechanical design; ...)
 - Workshop (~4): Mechanical systems (Machining; Fitting; Production;...)
- Signal processing (Back-end) (~15): Digital technologies (RFoF; Samplers/ Digitisers; Timing systems; Beamformers; Correlators;...) - <u>Digital Signal</u> <u>Processing</u> & FPGAs
- Scientific Computing (~13): Control and monitoring systems; calibration strategies and algorithms; data processing (e.g ASKAPsoft). (<u>Operations</u> <u>Program</u>).
- Engineering Generalists (~4): System Scientists/Engineers; System integrators; New Ideas; ...
- (**Program support (4):** Systems engineering; Program & Project support)
- *1: Small groups [] Single subject experts [] (Risk: Single-point failures?)
- *2: <u>Critical mass</u> issues [] Could not lose ≥ 1-2 people/group
- **People:** Andrew Brown left Sept job(s) advertised
- Secondments: Alex Dunning (MPIfR); Returned march 2019
 - Mark Bowen (SKA) (LWP) (Return Aug 2019)

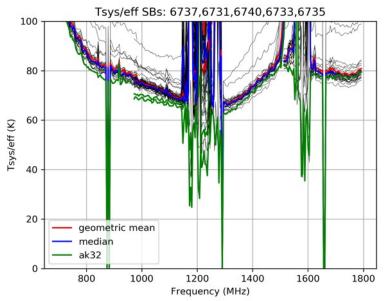
Directions for ATNF Engineering

**** Broad directions largely unchanged**

- ASKAP & SKA: Core business of the Engineering Program.
 - Most of the program's people and effort at present.
- Development projects for all ATNF facilities.
 - Budgetary constraints [] Priorities
- Strategic developments develop capabilities.
- External contracts maintain capabilities.

Current Technologies Projects (PAF systems technologies) PAF systems technologies

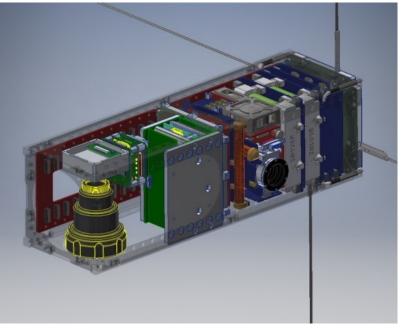
- ADE PAFs for Effelsberg & Jodrell Bank (External contracts)
 - Effelsberg Commissioned; searching for FRBs
 - Jodrell Bank digital back-end installed. Feed waiting for antenna.
- 2. SKA: International commitment. ~10 FTE (Engineering)
 - Pre-construction consortia (CSP; AIV; SDP; SaDT...)
 - CSP system CDR passed!!
 - **PAF technology development** (AIP/ODP) + some internal resources
- 3. FAST 19-beam receiver external contract [] "Expectations exceeded"!
 - Commissioned (May 2018) Tsys 16-17 K on dish.
- 4. UWB: System for Parkes ~3-4 FTE (Engineering
 - 700-4000 MHz; novel technology
 - Commissioned at Parkes. Great results!!
- 5. Rocket PAF 🛛 CryoPAF LIEF proposal not funded in Nov 2018 !!
 - R&D continuing in CASS.



ASKAP RF-transparent feed-legs

Proof-of-concept system: (1FTE + \$25

- Improve ASKAP Tsys by 10-20K
 - (
 achieve original ASKAP spec)
 - Survey speed x2
 - Test feasibility on 1 antenna
 - System shipped to MRO (May 2018)
 - Installed on AK32 in July 2018
 - Smooth changeover (video)
 - Aim to complete testing within 6 months
 - Delayed due to other ASKAP pressures
 - Preliminary tests inconclusive/mixed
 - Definite improvement at low end of bane
 - Results so far not conclusive (~5K ?)
 - More testing??
 - Decision deferred until final report.
 - <u>Delayed ASKAP priorities</u>


Space Technologies

CSIROSat-1: 3U CubeSat

O Hyperspectral IR Earth imaging
O On-board FPGA and SoC image processin
O CASS technical involvement
O Short-term impact on resources
O In-orbit re-programming
O S-Band down-link
O Technology demonstrator
O Capability building

• Future Science Platform (FSP)

- Funded end 2018 by CSIRO (\$16M)
- CASS involvement already in small projects (to June 2019)
- Proposals for larger projects submitted (26 April)
- Space Situational Awareness; Lunar radio astronomy mission!; ...
- Space Exciting new R&D
 - Impact on ATNF?? [] New resources needed! (SmartSat CRC?)
 - Space research Group??

Future Projects

ATUC April 2019

Priorities and Funding proposals

- Any future project requires large CASS contributions
 - e.g LIEF proposals >50% from CASS (mainly labour)
 - Limited CASS annual budgets Labour + CAPEX
- 🛛 Need to prioritise what proposals go forward each year
 - Implications for future years; Strategic considerations.
- ATUC link to community input in prioritisation.
 - LIEF proposals are university led.
 - Strong science case and support from community essential.

Expression of Interest (EoI) call – September 2018 (as agreed last ATUC)

- Received 3 Eols; CryoPAF; BIGCAT; FRBs at ASKAP
- CASS Exec reviewed (15 Oct);
- ATSC for comment (5 Nov)
- LIEF decisions made (Feb-Mar 2019)

"Rocket" PAF [] CryoPAF

- Next generation PAF "rocket" elements
- Superb matching with LNA [] improved performance
 - Noise Temp due to uncooled LNAs
- 4x5 prototype constructed & tested on Parkes
 - ~15K better than equivalent ADE tests
- Design better suited to cooling [] cryopAF
 - CryoPAF for Parkes proposal Tsys <20K !?</p>
 - Cost: ~\$3M (incl >7 FTE from CASS)
 - ~7 FTE allocated this FY
- LIEF led by UWA Not funded Nov 2^{10}
 - Failed on technicality [] <u>Resubmitted LIEF proposal</u>
- R & D underway
 - Prototyping EM design; cooler; RFSoC
 - CoDR on tomorrow
- <u>Strategic priority (Possible external contrate k)</u>

20

15

Continuing commitment by CASS

Manager and Construction

1.5

1.25

Frequency (GHz)

Dal

Physiocanth

Rocket Array Pol A Rocket Array Pol B

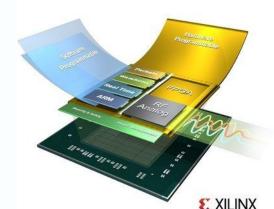
ASKAP ADE 5x4 Rocket Array Simulation

1.75

GPU upgrade of ATCA - BIGCAT

- Update CABB and double BW (sensitivity increase) (ATUC Jun 2017)
 - Versatile; flexible; fast transients; maintainability; unattended observing; support
 - Full proposal ~\$2.5M Capital ~\$1M; Labour ~\$1.5M (mainly from CASS)
 - **CABB Update:** ~\$1M. Possible within ~6 month period
 - Fallback if major CABB failure
 - ** [] LIEF proposal submitted; Led by WSU
 - CASS continues R&D;
 - ADC design from UWL system;
 - Possible RFSoC design Prototype board; results encouraging! **
 - 4 GPU test system now
 - ** Tested RFSoC to GPU transfers in lab (April 2019)
 - Software Correlator design (GPU "hackathon" @ Pawsey) April 2018

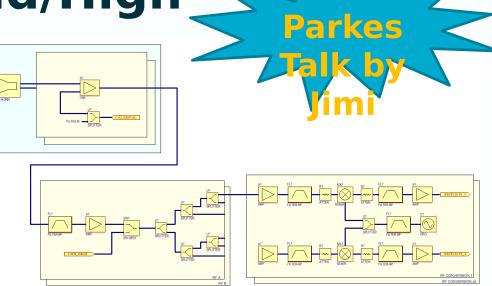
ASKAP coherent FRB detector


- ASKAP coherent FRB detector (+ tied-array VLBI)
 - GPU cluster needed (~\$1M); Commensal; 1" localization
 - x5-10 than best current systems on ASKAP
 - Comments/Decisions:
 - Very high science return!! But competition means time critical.
 - INO LIEF proposal! (would start only in 2020!)
 - Find alternative funding in community and start immediately!!
- Discussions on collaborative effort/funding ongoing
 - Requires ASKAP array fully operational
 - And ~2FTE of FPGA re-development of ASKAP
 - Highest priority for "ASKAP enhancements"
 - Some ongoing R&D; First review June 2019
 - Critical Concept Design Review September 2019.

Digital systems R&D

- ADC: Faster designs
 - Current: 4 Gsps; New: 6 Gsps avail; Future: 8 Gsps & 16 Gsps!
- Xilinx RFSOC: Integrated ADC + FPGA
 - 8 x 4 Gsps ADCs or 16 x 2 Gsps ADCs
 - Chips now available; Board acquired &tested.
 - R&D projects e.g CABB prototype
- CryoPAF back-end:
 - Now using ASKAP ADE; New RFSoC system?
 - Also for SKA?
- "Bluering" RFSoC prototype
 - Modular, scalable to 512 RF inputs
 - (32 RFSoC devices)
 - RFoF inputs; Direct RF sampling (12-bit:
 - Array-based DSP
 - Optical data transport
- RFSoC systems:
 game-changer
 - UWB; CABB; cryoPAF; SKA; Space?, ...

All Programmable RFSoC


Parkes UWB Mid/High

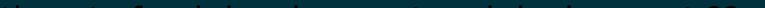
Based around UWBL and compact array CX system

Utilising much of the UWBL system; i.e. Samplers; Backend; GPUs; Software

Current Bands are

- 4.0-15.4GHz
- 15.4-26.9GHz
- Using 12 UWBL digitizers (6 per polarisation)
- 4-15 GHz band is sampled using 6 digitizers at 4096MSPS
- 15-27 GHz band is converted down to 4-15 GHz band
- 4-24 GHz system may be possible but is problematic, would be very attractive for other teles NOTS currently funded

UWB Mid preliminary circuit diagram


- Discussed at ATUC 2014; Chose UWL fir
- Cost: ~\$0.5M h/w; + 5 FTE Labour.
- Needs funding. LIEF??
 - **Priority?**

Low-Frequency Long-Baseline Interferometern hemisphere.

- Leveraging MWA and SKA1-LOW
- High-quality imaging follow-up for MWA, ASKAP, and SKA;
- Radio galaxy evolution, exoplanets, pulsars, and the ISM
- Platform for ATNF low-frequency technical developments,
- Increase capabilities in the domain of space surveillance.
- Engineering components available i.e.
 - MWA or LFAA antennas & LNAs. ("tiles")
 - "Bluering " digital beamformers; FPGA ("Gemini") for DSP

ATUC Will 2019 expertise & correlator (LBA)

CSIRO

Current world-leading R&D Phased Array Feeds (PAF) and receivers

- Demonstrated with ASKAP and provided for MPIfR & Jodrell Bank.
- New "rocket PAF" feed and cryoPAF system for Parkes
- Wide-band (3.4:1) & Scalable designs for \sim 0.5-30 GHz.
- Ultra-Wide Band (UWB) feeds and receivers:
 - Cover 6:1 BW with constant beams. UWB-L system (0.7-4 GHz) at Parkes.
 - Scalable designs that can be adapted to cover frequencies from \sim 0.5-30 GHz.
 - High dynamic range systems (>60 dB) with high RFI tolerance
- State-of-the-art Digital Systems for PAF & UWB systems
 - Demonstrated for PAF (ASKAP) and UWB-L (Parkes)
 - R&D systems: Gemini FPGA (SKA) & RFSoC (ADC+FPGA)

CSIRC

- ATUG April 2019 back-end systems: Emerging R&D.
- Darkes LIMP L collaboration with Swinburne

Summary & Questions

- ATNF Technologies capabilities & world leading R&D
 - PAFs & UWB
 - FPGAs & RFSoC
 - GPUS
- Current, planned & future projects
 - ASKAP; SKA; UWB-L
 - CryoPAF; BIGCAT;
 - ASKAP coherent FRB detector collaboration
 - UWB-High?; LF VLBI?;
 - ?? Suggestions ??
- Eol process again?
 - Feedback
 - Prioritisation process?
 - Open to suggestions & collaborations

CSIRO Astronomy and Space Science Tasso Tzioumis Facilities Program Director- Technologies for Radio Astronomy +61 2 9372 4350 Tasso.tzioumis@csiro.au www.csiro.au

CSIRO ASTRONOMY AND SPACE SCIENCE

