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The choice of linearly polarized feeds for the AT
complicates the overall calibraticn procedure. Essentially.

before we can calibrate the array’s polarization
characteristics we need to establish a large number of array
parameters, (For example, the station coordinates; the
clock error: ect)., To do this we should observe point

sources 1n the 1 stokes parameter, which requires us to
combine correlator products, which can only be done if the
polarization properties are known, {The saving grace 1in
this is that there is a marked hierarchy in the errors and
their influence, so that a simple iterative scheme is quite
possible),

This note - which is, to a large extent, a reworking of
the Komesarcoff AT/21.3.1/010 & /011 -~ addresses this
problem, in the form of three guestions:

a. If the polarization calibration had been performed,
how would we treat the data, (ie, the correlator
products)?

b. What are the consequences of calibration errors?
What limits are placed on the achievable dynamic range, for
example?

c. How might we calibrate?

We show that each antenna can be characterized by 3
matrices, each 2x2: a gain matrix, a cross-pnolarizatiocn
matrix and a rotation matrix.

The gain matrix describes the gain amplitude and phase
characteristics of each polarization channel.

The cross-polarization matrix containe a number of
trigonometric terms based on 4 angles, 2 for each
polarization, They relate to the ellipticity and
orientation of the antenna/feed.

The rotation matrix involves the parallactic angle, and
serves to transform the alt-az. coordinate frame of the
antenna to the equatorial frame,
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The ON-line processing should produce stokes parameters
expressed in the equatorial frame, free of antenna defects -
the processing can be simply expressed as 3 matrix
operations on the correlator products.

we show that a relatively simple iterative scheme can
be set up to calibrate the instrument, each pass producing
correction terms to be added to the antenna matrices.

In order to calibrate the pointing and polarization
characteristics we need a network of calibration sources,
0f preference, these should be point, of known position, At
least one source of known flux density is needed 1n order to
place the array on the flux density scale. A polarized
source of known position angle ig required in order to
determine the mean feed rotation angle, The instrumental
circular polarization requires a source of =zeroc circular

polarization, As Komesaroff noted, the magnitude of a
source’s polarization can be determined from the
observations, independantly of the calibration, so that
sources of zero linear polarization can be identified., Such

sources may simplify the determination of elevation angle
dependance 1n the polarization properties.

There are 4 sections: a section on notation and
algebra: this is 1ntended to simplify the discussion, as we
provide a fairly compact notation, Then follow 3 secticns,
dealing with the 3 guestions above.

The basic conclusion 1is that it will be possible to
calibrate the AT adequately for polarization measurements,
and that the calibration algorithm is reagonably simple.
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k. Notation,

We wuse bhold type UPPER CASE (eg, E) to represent a
matrix (usually 2x2), and bold type, lower case (ed. v) to
represent a vector.

The discussion is essentially based on Weiler (1973),
Schwab (1984) and Komesaroff (1984), The intention 1s to
relate the Stokes parameters (as fourier components) to the
correlator products,

a. The electric field:

Let e = f{e, ,es.) be the electric field to be measured,
expressed in the equatorial coordinate frame. In the frame
of an alt-az. telescope we have: ™ 3

/7
e. = f(cos(yx) -sintyxN\fe ;5
sin(y) cog(y)])\ea
e = Ry.e R —R

o

For the compact array, ¥ is the same for all antennas,
(Over 6 km. Ay < 10', except for the odd source transiting
through the zenith).

x,

b. A feed’'s response to an electric field is
characterized by 2 angles. # and ¢; ¢ 1s a measure of the
in-phasge cross-polarization, and @ is the quadrature
response. (If the crogs-polarization is due to the feed
alone, ¢ is the position angle of the feed).

The voltage at the feed’'s terminals can be written:

{cos(8) —1.51n(8}) sin(¢) cos($)\[ e. 4
(Eos(¢) -sin(¢) (e,)
= a.e -y
1 =

For a horizontally oriented feed, ¢ is essentially 90,
and for a vertical feed, ¢ is close to O, It should be
noted that in this formulation we are tacitly assuming that
there will be no cross-coupling in the receivers, nor in the
IF system,

<
H




Page 4

c. We need to allow for the complex gain of the IF
channel - call this 4. This will encompass the phase
introduced by the clock and LO errors, &as well as the phase
shifts in the Receiver/IF chains.

d. We also need to reckon with a telescope-based phase
term arising from the atmosphere/ionosphere, call it ¢,

The correlator products then take the form:

Ve V' 2

m
»
o

1]

= ei(d’l_wb )g‘g; (&. .e.)-(ab . €y )'T
= ol e~V )y gi(a, ). (e, . el*) . (&)
The matrix which results from the 2 electric field

vectors describes the Stokes parameters; - as fourier
components for an interferometer

e,el* = [Ce el > <e ey
(e, et » <e, ey

1/2 Ryxa I-0 U-iV\ Ryl
u+iv I+0Q

Rx. 'Plb GRXI

where Py = 172 1I-Q Uu-iv
U+iVv 1+0

Consider now the 4 correlator products from & single
paseline. We use subscriptz (a,b) for the antenna, and
superscripts (h,v) for the feed orientation. (The "h" feed
haz a horizontal orientation, and should be parallel to the
Xx-axis).




page S

each will take the form:
s = el (¥ P )guque ay (R.P,.RT) &b

The four products can conveniently be combined in a 2x2
matrix:

S = ghh gh ,
Svh Suv
g, = etV ¥ g A, .(R.Puw.RI.ALGT .. (1)
where
G. =1 o} 0
0 ai
and
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B, On-Line reduction of the correlator products.

Wwe intend to convert the correlator products to Stokes
parameters automatically, on-line. Thus we need to invert
equation (1} pP(est) is our estimate of P, derived from the
correlator products:

p(est) = Ry™* . M. =1, S.,. GT ASTY RY ol (2

Thus the correlator products pass through 3 correction
stages: we compensate for gain/phase changes in the IF,
then for cross-polarization, and finally for parallactic
rotation, in order to obtain the stokes parameters 1in the
equatorial frame.

The 3 correction matrices (R, P, G) have qguite
different time scales:

R depends on Y, and so must be reevaluated every integration
interval:

A should be constant, as it depends on the telescope
structure. However, if pParkes 18 a guide, Some elevation
dependance may need to be catered for.

G may vary throughout the observation, and will be allowed
for:-

A "relative complex gain moniter™ will be provided, one
for each telegcope/frequency band. in easence 1t will
monitor the magnitude of the gain of each IF channel, as
well as the relative phase of the two polarization channels.
Its output will be a continuous monitor of the 3 quantities:

v (L) = v

ut (L)

fvr |
p(t) = phase (vt /ve )

where v is the voltage due to a suitched noise tube
connected to both h and v feeds.

After the calibration exercise we will have established
values for g"and g*, for some reference values v, ouY o,
and p. puring the course of the observations we will then
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correct g
i{plref)-p(t)}

i

g" (t) gt (ref).(v" (ref)/v" (L)) e

g* (t)

g* (ref).(v* (ref)/v* (t))

(This assumes that the analog/digital filter question has
been resolved. and that v and g truly monitor the gignals

going to the correlator). The accuracy to which the gain
and phase can be estahlished will depend. of course, on the
bandwidth and integration time: thug it depends on the
time-scale of the receiver variations, Accuracies of order

1% and 1 © imn 1 second integration at 160 MHz bandwidth
requires a calibration noise step of 3 K. Phase wvariations
between telescopes are neither monitored nor corrected by
this machinery: calibration source observations,
celf-calibration analysis and redundancy configurations will
be required,
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c. Congeguences of ralibration error,

We will estimate the stokes parameters from the
correlator products by inverting equation (2). But since
the quantities involved in this operation are imperfectly
known (the basic calibration problem), our estimate of P
will be subject to error. in this section we attempt to
assess the consequences of the calibration errors, and to
eastimate the limitations to the achievable dynamic range in
the final maps. Specifically, we examine the conseguences
of errors in G, @, and ¢. Our estimate of P can be written
in the form:

plest) = et'¥e ¥ e, [ P, . CF
where C (a matrix which ideally should be the identity):
C. = Ryt. Ay, Gt G . A . Ry
The calibration based gquantities are indicated by (').
We expand C, (on the assumtion that the errors in G and
A are modest), to provide expressions relating the estimated

stokes parameters to the actual values and to the
calibration errors., (The gory details are given 1n the

appendix,. This formulation assumes that there is, in fact,
little cross-polarizaton. This 1is probably a valid
approximation, as the design intentions are that the

cross-polarization should be lezs than 30 db.)
we put (g/g’) =1 + ¢; & = A¢ - 1A6. Then:
2Il(est) = 21
(3>
+ I, ((e*+e” ). + (ev+e” i)

+ 0.(((e¥ "), + (e -g* )i )cos(2y)
—(Cgv -t ), o+ (T - OE)sin(2x))

+ U (C(gY -em ), + Lgv-g" 2 )sin(2y)
+O(EY =M ), + (g =" )cos(2x))

iV, gy +Lh ), - (LY +EM DR )
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2QCest) = 2Q

(4)
+ I,.0CCeYy =g )y + (eg¥y=-¢" )} Jcos(2y)
=(CEY =M 3, o+ (LY -EM )2 )s8in(2y))
+ Q. ((e¥+eh ), + (e¥+eh )
+ U, ((n¥ +&% ), + (Z¥ +Ed )2 )
-1V, {({(eg¥ =gh ), - (g¥-¢e" )2 dsin(2y)
+(CgY =z ), = (gv =z 3 dcos(2y))
2UCest) = 2U
(5)
+ T.0(Cey —eh 3y + (g*-gh )t dgin(2y)
+((LY =gh ), + (LY -Z" ) dYecos(2x))
- Q. (CEY +&* ), + (E¥ 4% )F )
+ U, ((e¥+eh ), + (e +&d ) )
+iV.((Ce¥ -ed ), - (" =" ) deos(2y)
-{(gy ~trh ), - (E¥ -rh ) )sin(2y))
2iViest) = 2iv
(6)

+ T, (CgY +&h ), - (& +&" 1)

- Q.0C0CeY —gh 3, - (g¥~-g" )t )ain(2y)
+( (LY -Lh ), - (v -r* )t dcos(2y))

+ U, (({g¥ -e™ }, - (& -¢* )2 )cos(2y)
-CCEY =Eh ). =~ (EY -ZhOE¥sin(2y))

+1V, (Ce¥ +eh ), + (&Y +eh )2 )

(The term el(¥s %) which we have omitted in equations 3
to 6 is common to all of them: that is, it is a common
scale factor.)

The complex relative gain monitor should allew us to
correct variations in {e} that occur during the course of an
observation, to well below the 1% level, However,
calibrating (e} and (&} is a different (and harder)
question., The requirements can be estimated.
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In general, Q@ S 0.1 1. and V< 0.01 I. Hence, to
measure O with 10 % accuracy (0.1 +/- 0.01 1), we reqguire
{e} and {%} to be below the 1% level.

gimilarly, to measure V with 50% accuracy (0.01 +/-
0.005 I), we require {¢} below the 0,5% level.

In the next section we investigate the prospects of
achieving this.
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D. How do we calibrate?

The difficulty arises because of the multiplicity of
errors which all produce phase errors, We 1list below the
major problems which need to be catered for.

Station coordinate errcrs.

Telescope pogition errors. (Location on the
pedestal).

Movement of the phase centre as the telescope drives
in elevation.

Station clock error,

Array clock error.

Delay tracking error.

, L0, phase error.

Correlator phase error.

. Differential bandpass phase effects,.

0. Gain and phase offsets in the receiver/IF chain

1. Polarization properties of the antenna/feed (8. ¢).

w B =
. - .

Lol N o e VR B LN 0 g N

The i1dentification of items 1 to 9 is relatively
straightforward, provided we have a network of point sources

at known position, But we need to combine Z correlator
products in order to obtain I: and this reguires {e} to be
established,

A possible calibration scenario.

The calibration scheme we propose is an iterative one -
although a global, least squares approach could possibly be
formulated, it is believed that the scheme outlined here is
robust, simple, and lends itself to a gradual upgrading of
the accuracy with which the instrumental parameters are

known, It has a further advantage that a single data format
is sufficient: data recorded for calibration purposes will
use exactly the same format as the “"real” data: we always

record stokes parameters,

The essence of the scheme is contained in equations 3
to 6, which relate the estimated stokes parameters to the
actual valueg and to the errors in the instrumental
parameters., Three main stages are required:
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1. Preliminary single dish meazurements provide a reasonably
good first estimate of {e} and (L}

2. Observe a number of point sources with the array: use
the values of I(est) to establish the array parameters;

3. Track a number of peint sources over a range of
parallactic angles to provide better polarization
calibration,

We can iterate on item 3: the correlator products will
be reduced to stokes parameters using the currently
available G and A matrices. The calibration process will
vield {e} and {&} with which we can improve the G and A.
This scheme also lends itself well to the proposed
calibration source file: we could observe a number of
calibration sourceg over & period of time and, providing
that they all used the same G and A, we could average the
{e) and {Z1}.

C.1. Single dish measurements,

We use equations 3 to &, 1n a single~dish mode: ie.
determine S

Observe some unpolarized sources, to obtain |g" |

a
and lg*|. It should be possible to obtain accuracies in the

b. Observe polarized sources to obtain the phase of
(g" /g* ). The important thing here is that there be

polarization - we then look at the cross-correlation
products: (S*h/S*) for example, if we were to use the
correlator in a "single antenna"™ mode, Since we cannot

rotate the feeds, we should track the source over a range of
¥, to ensure that the source is indeed polarized, and that
large errors 1in {{} have not resulted in I entering the
calculation.

c. Polarized sources with known pogition angle can
define the mean ¢. (Otherwise, we can only determine 4¢.)

d. Return to the unpolarized sources to determine
(¢* —¢* ) and (& +8H )

It should be possible to determine 3 angles (phase
(g" /g* ), (Bv+8"), and (¢ -¢" ) to accuracies of order
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several degrees. At this 3tage G and A are adeqguately
specified to allow interferometer products to be combined,
vielding a good estimate of 1I.

C.2 Define the array parameters,

Designate one particular antenna as reference - for the
phase of the IF/LO aystem.

We can combine 5 and S*™ to yield a good estimate of:
et (e =¥ )

The array parameters can then be determined, with
reference to a network of ©point source calibrators of
accurately known position.

C.3 Polarization calibration,

If we track a point source over a range of parallactic
angles, we will find that all four stokes parameters will
show a dependance on y of the form:

F =12 + B.cos(2y) + C.z3in(2y)

In equaticons (3) and (6) we make use of the terms
tndependant of y: the "A" term is a function of 1 and Ve
with error terms of comparable magnitude, we will neglect
the dependance on V. Similarly, from equations (4) and (5)
we will wuse the “B" and "C" terms, which also depend on I
and V alone,

From (3) we determine the Real part of (z' +¢*)* we
can determine all the Imaginary parts (the phase), but we
need to specify a reference antenna. (In effect, only the
phase difference enters).

From (6) we obtain the imaginary part of (LY +gh )
thus, we determine the angle g, the guadature
cross-coupling, The Real part (the in-phase component) can
be determined, once a reference direction is set,

In a similar manner, equations (4) and (5) allow us to
measure the difference between the v and h feeds, thus
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providing all the factors.

It should be emphasized that the calibration procedure
requires us to provide 3 bite of information the £flux
density - to set the scale of the data, the position angle
of the polarization, and the magnitude of circular
polarization, to set the instrumental circular polarization,
In addition, we assume that the source is at the tracking
centre of the interferometers.

In some more detail:

1. From equation (3):

R = I + TI(C(g¥ +e" ).+ ey +e" )F 3/2

A + Roc — Afa = (Cg* +e" )y +(ev +e" )3 )/2 + 1
= (Real part of (&gl ) + 1
We then set the mean phase of the reference antenna

(eg, b) to zero, 30 that from each A we can solve for the
mean phase of the remaining antennas.

2, Equation (6) is treated similarly.
3. From (4) and (5) we get (g* —-¢") and (& -&" ).

Wwe could solve for "B" and "C" separately in (4) and
(5), or, somewhat more tidily, form:

E, cos(2y).(4) + sin(2y).(5) . . (4")

E, -2in(2y).(4) + cos(2y).(5) . ., (57)

1l

The constant part (indip. of y) in (4') yields (e}, while
the constant part in (5°) yields {Z}.

Tbe values of {e¢} and (%} which result from these
operations can be added to the then current set to improve
the calibration factors,
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C.4 What accuracy will be achievable?

We can identify a number of determinantz of the
accuracy of {e} and {%}:

1. The quality of the «calibrators. Are they at the
assumed position, of the adopted flux density,

linear polarization position angle, and with zero
circular polarization?

2. The phase noige introduced by the atmosphere,

J, Instrumental errors.

At the moment there is no obvious answer: presumably
it will be a bootstrap operation. 1% and 1 if we are
lucky/careful?
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APPENDIX A

The correction matrix (C)

Cn = Rr-l hll-i G'.-i. Gl hn RI
1.
G ={gh 0
0 g*
G1.G = [ 1+en 0
0 1+¢e¥
(An enthusiast may wish to allow alsc for the determinant,

which will be =slightly > 1),

2.
A ={Ay An
Byz  Bu
Ay = (cos(B8)sin(¢) - isin(8)cos(¢) )
Ay = (cos(8)cos(e) + isin(8)sin(¢) )
Az = (cos(8)sin(¢) - isin(8)cos(¢) )
Bz = (cos(flcos(¢d) + 1sin(8)sin(¢) )"




Now

and,

put

3.

Then,

and

P(est)

Bh
¢h

and
~ 0,

)

A ~ 0 -A¢ + 1AE€
Ad + 148 0

so that:

(

~ g ~ 0
~ R/2: ¢

A~ (1 0
0o 1

so that:

)

A¢ - 1A8,

w
1l

1 + gh

tv

(A", G"*'.G.A) =

C=1+R'" (3G + &6.A).R

= P + R*.(3G + 5.AL.R.P + P.R' (3G + &n&.n
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