
University of Technology, Sydney
Faculty of Engineering

Interface Electronics for the
Australia Telescope Compact Array

by

Suzanne Amanda Jackson

Student Number: 97051597
Major: Telecommunications Engineering

Supervisor: A/Prof Sam Reisenfeld
Industry Co-Supervisor: Graham Moorey (CSIRO ATNF)

A 12 Credit Point Project submitted in partial
fulfilment of the requirement for the degree of

Bachelor of Engineering

February 2003

Synopsis

I have been employed by the CSIRO Australia Telescope National Facility (ATNF)
for much of the duration of my studies towards the Bachelor of Engineering. Early in
my career with the ATNF, it became evident that the AT dataset hardware which we
had made great use of over the years would have to be re-thought, especially given the
increasing complexity of upcoming receivers for the Major National Research Facilities
(MNRF) upgrade.

The germ for this project was planted late one night at Parkes observatory, whilst
faultfinding an interface unit for the Parkes conversion system, a module which provides
extra functionality for an AT dataset. Much of the interface hardware was realised in
programmable logic, and it occurred to us that it would be possible, and indeed useful,
to re-engineer the core of the dataset functionality using programmable logic, so that
it was no longer tied to a specific processor, or indeed set of hardware.

This thesis seeks to document much of the progress to date towards the goal of a
simple, re-useable dataset engine, as well as the implementation, using this engine, of
an interfacing system for the MNRF millimetre receivers on the Australia Telescope
Compact Array. It covers some background information on the AT dataset protocol,
the development of a VHDL model describing the protocol, and several instances of
hardware making use of the protocol.

Of particular interest are the efforts at reducing RFI emanations from the receiver
interface, as well as the design of an ultra low noise ADC subsystem for the water
vapour radiometer.

Finally, the thesis documents some of the test software used along the way to prove
system operation, as well as some of the systems integration and project management
hurdles experienced throughout the course of the project.

i

Statement of Originality

This thesis is the result of work undertaken between 2000 and 2003 in the Department
of Telecommunications Engineering at the University of Technology, Sydney, and the
CSIRO Australia Telescope National Facility.

Work on the Australia Telescope dataset protocol is based upon work carried out
at the Australia Telescope National Facility between 1985 and 1990, principally by
Richard Ferris. Further developments on this work were carried out in consultation
with Mr Ferris, and George Graves, of the Australia Telescope Receiver Group.

Mechanical fabrication of components for this thesis was carried out by technical
staff of the Australia Telescope, both at the Marsfield Radiophysics Laboratory, and
the Narrabri Compact Array Observatory. Similarly, assembly of production versions of
printed circuit boards for this thesis was carried out by technicians at the Radiophysics
Laboratory.

Overall top level design of the interfacing system, including the decision to use
optical fibre to connect the millimetre receivers back to the antenna control computers,
was done in conjunction with Graham Moorey, head, Australia Telescope Receiver
Group.

Dataset protocol ’C’ libraries used within the Australia Telescope were incorporated
in the test software written for this project. The author of these libraries is unknown.

LATEX 2ε code written by Dr Shaun Amy of the Australia Telescope National Facility
was utilised as a template for this thesis.

This thesis contains no material which has been presented for another degree at this
or any other university and, to the best of my knowledge and belief, contains no copy
or paraphrase of work published by another person, except where duly acknowledged
in the text.

Suzanne A. Jackson
February 2003

iii

Acknowledgements

I feel a debt of gratitude towards a large number of people, both for assistance over
the course of this project, and also over the course of my studies. First and foremost
must come my supervisors, Graham Moorey and A/Prof Sam Reisenfeld, for their
unfailing support over the last eight months.

My colleagues within the Receiver Group also bear special mention, both as a
rich source of ideas and inspiration, and also for helping in every step of the way in
taking these ideas and creating practical hardware from them. In particular, I must
thank Henry Kanoniuk, George Graves, Mark Bowen, Eliane Hakvoort, Les Reilly,
Alex Dunning, and Jennifer Lie.

Numerous people in the ATNF workshops at Marsfield and Narrabri Observatory
have also been of great assistance, machining metal and installing equipment where
required, and on occasion showing great patience when not everything worked as ex-
pected.

Dr Dave McConnell, Dave Brodrick, Dr Mike Kesteven, and Simone Magri have
been extremely helpful in debugging software aspects of this project, and have written
large amounts of code to make these interface units work with AT online computing
systems.

Graeme Carrâd analysed huge amounts of data from the water vapour radiometer
acquisition system, whilst Dr Peter Hall, and Dr Robert Sault offered help in setting
design goals for the system.

Dr Shaun Amy provided invaluable assistance in the typesetting and layout of this
document, as well as kind and considerate advice, and lending an ear where warranted.

Finally I must thank my partner, Perry Armstrong, who has stood by me through-
out the trials, tribulations, and occasional successes that have made up this degree.
Without his unfailing emotional support, none of this would have been possible.

The presentation of this thesis was made possible through the use of LATEX 2ε.

v

Abstract

The Australia Telescope National Facility runs a synthesis array near Narrabri
comprising six 22m dishes. New receivers are being built for these antennas to cover
16-26GHz and 85-115GHz. As part of this upgrade, interface modules for the receivers
must be designed and built, and these interfaces must be connected back to the antenna
control computers.

These interface units will allow numerous analogue and digital variables to be in-
terrogated via a high speed fibre optic interface. Close proximity to the receiving
feedhorns dictate that particular attention must be paid to radio frequency emissions.
The interfaces will make use of programmable gate arrays, for which firmware will be
developed using schematic and VHDL.

This thesis covers the design and implementation of the interfacing hardware and
software for these new receivers.

vii

Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Overview . 1

1.2 Australia Telescope Receiver Group . 1

1.3 Receiver Interfacing History and Background 3

1.4 Precis of Work . 4

2 Literature Review 5

2.1 Introduction . 5

2.2 VHDL Literature . 5

2.3 Compact Array Documentation . 5

2.4 Xilinx Design Documentation . 6

2.5 RFI Mitigation . 6

2.6 Labwindows/CVI Coding . 6

3 Dataset Engine 7

3.1 Introduction . 7

3.2 AT Dataset Protocol . 8

3.2.1 Request Format . 9

3.2.2 Response Format . 10

3.2.3 Packet Padding and Response Latencies 12

3.2.4 Function Address Partitioning 13

3.2.5 Parallel Buss . 14

3.3 VHDL Coding . 14

3.3.1 UART Design . 15

3.3.2 Protocol Engine Design . 16

3.3.3 Simulation and Testing . 18

3.4 Schematic Instantiation . 19

3.5 Summary . 20

ix

x Contents

4 Receiver Interfaces 21
4.1 General Interfacing Requirements . 21
4.2 F83 Interface . 22

4.2.1 RFI Mitigation . 22
4.2.2 PCB Design . 24
4.2.3 FPGA Design . 26

4.3 Conversion Interface . 27
4.3.1 PCB Design . 27

4.4 Local Oscillator Interface . 28
4.4.1 PCB Design and Packaging Issues 29

4.5 Water Vapour Radiometer . 29
4.5.1 PCB Design . 30
4.5.2 FPGA Design . 32

4.6 Testing . 33
4.7 Summary . 37

5 Test Software 39
5.1 Overall Requirements . 39
5.2 Dataset Libraries . 40
5.3 Dataset Test Code . 40
5.4 Receiver Monitor Panel . 41
5.5 Water Vapour Radiometer Code . 42

5.5.1 Server . 42
5.5.2 Client . 43

5.6 Summary . 45

6 Systems Integration and Project Management 47
6.1 Overview . 47
6.2 Fibre Cabling . 47

6.2.1 Fibre Mux . 48
6.2.2 Fibre Modems . 49

6.3 Project Management Issues . 49
6.4 Summary . 49

7 Conclusions and Future Work 51
7.1 Conclusions . 51
7.2 Future Work . 51

Bibliography 53

A AT Dataset Engine VHDL Source 55
A.1 UART Source . 55
A.2 Dataset Source . 60
A.3 F83 ADC Sequencer Source . 71

Contents xi

A.4 F83 Bus Controller Source . 74
A.5 WVR ADC Sequencer Source . 77

B F83 Interface Schematics 83

C WVR Interface Schematics 97

D Conversion Interface Schematics 105

E LO Interface Schematics 111

F Fibre Mux Schematics 115

G Labwindows/CVI Source Code 117
G.1 Dataset Test Panel . 117

G.1.1 dataset serv.c . 117
G.2 Receiver Monitor Panel . 127

G.2.1 mm rx.c . 127
G.3 Water Vapour Radiometer Server . 133

G.3.1 wvr.c . 133
G.4 Water Vapour Radiometer Client . 146

G.4.1 wvr client.c . 146

xii Contents

List of Tables

3.1 Dataset request packet composition . 10
3.2 Dataset request special characters . 10
3.3 Dataset monitor reply packet composition (no errors or warnings) . . . 11
3.4 Dataset command reply packet composition (no errors or warnings) . . 11
3.5 Dataset error register bit allocations 11
3.6 Dataset response special characters . 12
3.7 Control function address partitioning (D3) 13
3.8 Monitor function address partitioning (D3) 13
3.9 Dataset serial format . 15
3.10 Common baud rate dividers . 16

4.1 HFE4074 fibre transmitter specifications summary 26
4.2 HFD3023 fibre receiver specifications summary 26
4.3 Compact Array receiver interface fibre link budget 26

xiii

xiv List of Tables

List of Figures

1.1 ATNF Compact Array antennas, in compact configuration with solid
panels . 2

1.2 Compact Array millimetre receiver prototypes 2

3.1 AT dataset buss structure . 7
3.2 A “D2” dataset module . 8
3.3 VHDL dataset parallel buss monitor timing 14
3.4 VHDL dataset parallel buss control timing 15
3.5 VHDL dataset simulation run . 19
3.6 Dataset schematic symbol . 19

4.1 F83 interface card . 22
4.2 F83 ADC schematic . 24
4.3 Conversion interface card . 28
4.4 Local oscillator interface card . 29
4.5 WVR interface card . 30
4.6 WVR data acquisition schematic . 31
4.7 WVR ADC reference histogram . 32
4.8 F83 interface test board . 34
4.9 F83 interface RFI test setup . 35
4.10 F83 interface RFI results . 36

5.1 Dataset test panel screendump . 40
5.2 Receiver monitor panel . 41
5.3 Water vapour radiometer server panel 43
5.4 Water vapour radiometer client panel 44

6.1 Fibre mux board . 48

B.1 F83 interface project sheet . 83
B.2 F83 interface ADC schematic . 84
B.3 F83 interface digital I/O 1 schematic 85
B.4 F83 interface digital I/O 2 schematic 86
B.5 F83 interface RFI filtering schematic 87
B.6 F83 interface Xilinx support schematic 88
B.7 F83 interface power supply schematic 89

xv

xvi List of Figures

B.8 F83 interface Xilinx project sheet . 90
B.9 F83 interface Xilinx comms schematic 91
B.10 F83 interface Xilinx address decode schematic 92
B.11 F83 interface Xilinx address buss schematic 93
B.12 F83 interface Xilinx local ports schematic 94
B.13 F83 interface Xilinx ADC sequencing schematic 95
B.14 F83 interface Xilinx transceiver direction schematic 96

C.1 WVR interface project sheet . 97
C.2 WVR interface ADC schematic . 98
C.3 WVR interface RFI filtering schematic 99
C.4 WVR interface digital I/O schematic 100
C.5 WVR interface DAC schematic . 101
C.6 WVR interface Xilinx support schematic 102
C.7 WVR interface power supply schematic 103
C.8 WVR interface Xilinx schematic . 104

D.1 MM conversion interface project sheet 105
D.2 MM conversion interface ADC schematic 106
D.3 MM conversion interface connector schematic 107
D.4 MM conversion interface digital I/O schematic 108
D.5 MM conversion interface Xilinx schematic 109
D.6 MM conversion interface power supply schematic 110

E.1 MM local oscillator interface schematic 112
E.2 MM local oscillator interface Xilinx schematic 113

F.1 MM fibre mux schematic . 116

Chapter 1

Introduction

The engineer’s first problem in any design situation is to discover what the

problem really is.

Unknown

1.1 Overview

The Australia Telescope National Facility (ATNF) is a division of the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) charged generally with the
administration and development of radio astronomy in Australia, and more specifically
with the operation of telescopes for use by Australian and international researchers.
The ATNF operates three installations; the 64m Parkes radio telescope, the 22m Mopra
radio telescope, and an array of six 22m radio telescopes at Narrabri, termed the
Australia Telescope Compact Array (ATCA).

As a result of the Working Nation report the ATNF was awarded an $11m grant
in 1995 in order to upgrade the Narrabri Compact Array telescope to operate at mil-
limetre wavelengths (DIST 1995). In addition to upgrades to the antenna surfaces
and provision of extra stations to support short baseline interferometry, a substantial
component of this upgrade is the design and manufacture of six new millimetre wave
receivers, covering frequency bands of 16-26GHz and 85-115GHz (Moorey et al. 2002).

In order to facilitate control and monitoring of these receivers from the antenna
control computers, a new programmable logic based “dataset” was developed. This
design serves as the core enabling technology for an interfacing subsystem to allow
computer control of the receivers and associated electronics via optical fibre.

This thesis covers the design and development of the dataset based interfacing
hardware used to control these receivers, as well as software written to test the hardware
and issues encountered in the implementation of the system.

1.2 Australia Telescope Receiver Group

The Australia Telescope (AT) receiver group has its origins in the birth of the science
of radio astronomy, immediately following World War 2. In the past fifty years, the AT

1

2 CHAPTER 1: Introduction

Figure 1.1: An aerial photo showing five ATNF Compact Array antennas, in a com-
pact millimetre-wave configuration, with new solid panels in place. The North/South
spur can be seen extending from the main line towards the left of the photograph.

Figure 1.2: Two Compact Array millimetre receiver prototypes, undergoing cool
down tests in the Narrabri receiver workshop. Much of the ancillary equipment,
such as the down conversion modules and Water Vapour Radiometer, are missing in
this picture.

CHAPTER 1: Introduction 3

receiver group (originally the radiophysics receiver group) has designed and constructed
numerous receivers for telescope installations in Australia and overseas.

Some of the more noteworthy examples of late are the Galileo receiver; an ultra low
noise, narrow band deep space communications receiver designed specifically to support
the NASA Galileo mission, following the near disastrous mishap which prevented the
spacecrafts’ main high gain dish from unfurling. Utilising a synthesis array composed
of the 64m dish at Parkes, and the 70m dish at Tidbinbilla, NASA scientists were able
to download some 70% of the expected Galileo mission data.

The Parkes telescope has also been given a new lease of life, thanks to the com-
missioning of a 13 beam 21cm Hydrogen “multibeam” receiver, comprising a massive
dewar supporting 26 independent low noise amplifiers and associated electronics.

The receiver group consists of some sixteen engineers and technicians, covering the
fields of cryogenics, RF and MMIC design and assembly, and digital electronics design.

1.3 Receiver Interfacing History and Background

The development of the Australia Telescope Compact Array, in the 1980s, posed nu-
merous control and monitoring challenges for AT engineers, principally in terms of
how to control a large, highly distributed electromechanical system with the utmost
in reliability, at low cost, whilst producing a minimum of unwanted Radio Frequency
Interference (RFI) that might be picked up by the sensitive receivers.

Prior to the development of the Compact Array, AT receiver systems had no remote
monitoring. Telescopes typically used only a few simple receivers, consisting of a basic
RF signal chain and cryogenics. Should something go wrong, the only way to tell was
that the signal disappeared. Configuration changes, such as changing frequency, were
done manually.

The “AT dataset” with its accompanying protocol, was developed in the late 1980s
to fulfil this need. The protocol is a simple asynchronous serial command/response
string, whereby registers within different equipment may be interrogated or changed
by providing an address and data string.

Previous AT receivers connected to a dataset via a single ended parallel buss. The
dataset then connected back to the Antenna Control Computer (ACC) via a serial line.
In order to mitigate the effects of RFI from the datasets, they were physically located
separately from the receiver feedhorns.

As part of the MNRF receiver development, a new interfacing scheme is also being
developed for use with the new receivers. This interfacing scheme must maintain a
high level of software compatibility with previous incarnations, whilst improving on
the original dataset design by being smaller, cheaper, faster, and most importantly
quieter (in terms of electromagnetic interference).

4 CHAPTER 1: Introduction

1.4 Precis of Work

This capstone project details a subset of the development work for the MNRF receiver
interfacing. This is a continuing project, starting in approximately 1999, and is ex-
pected to continue in some form well past the deadline for thesis submission. As such,
this thesis can only hope to capture a portion of this development and implementation
effort.

Chapter 2 details the process of literature review that was undertaken as part of
this project.

Chapter 3 goes into the development of the “dataset engine”, a simple VHDL
model describing the operation of the AT dataset protocol, so that the protocol may
be implemented in programmable logic.

Chapter 4 covers the design of most of the physical modules that make up the
receiver interfacing subsystem, and details some of the design challenges that were
overcome in order to realise the project. Of particular interest are the RFI challenges
posed by these units, as well as the ADC subsystem of the water vapour radiometer
interface.

Chapter 5 discusses some aspects of the various test programs that were used in
the commissioning of the prototype receivers.

Chapter 6 details aspects of the systems integration effort, required to patch all
these systems together and update the Compact Array antennas to use fibre optic
communications. This chapter also covers the project management issues encountered
over the course of the project.

In Chapter 7, the project as a whole is reflected upon, detailing what has been
achieved, and what is still to be done.

The appendices contain documentation which is of interest as reference material,
such as system schematics and code.

Chapter 2

Literature Review

Study the past if you would define the future.

Confucius

2.1 Introduction

As this thesis is part of an ongoing project, the process is not easily broken up into
literature review, design, implementation etc. Instead, each subsystem of the project
has been treated in this manner, so the literature review, like other aspects of the
development process, is a necessary adjunct to other work, and is revisited where
necessary.

In order to make some sense of the chaos, this literature review has been broken
down into subsections, which whilst they do not reflect a chronological progression,
certainly do represent a logical ordering of ideas for the project.

2.2 VHDL Literature

The seed for this project was germinated whilst studying Advanced Digital Systems, in
which the Very high speed logic Hardware Description Language (VHDL) was a major
topic. VHDL is a key enabling technology for this project. The text for this subject
(Yalamanchili 1998) was initially useful, but proved to be focused more on simulatable
rather than synthesisable VHDL code. My primary reference whilst designing the
VHDL subsections used in this design was Synopsis (1998). This reference proved an
invaluable resource. In addition, I came across a useful compendium of VHDL code in
Smith (1996), which provided numerous examples which were of use in this project.

2.3 Compact Array Documentation

The Australia Telescope Compact Array is a large, complex instrument. Much useful
information about the online computer systems and monitoring systems is available in
The Australia Telescope Compact Array Users’ Guide (1999). A succinct coverage of

5

6 CHAPTER 2: Literature Review

the monitoring schema was found in Hall et al. (1992). Descriptions of the AT Dataset
protocol were obtained from Ferris (1991). With such a large instrument, much remains
unwritten. A lot of useful information and ideas for dataset use were thus gleaned from
discussions with Dick Ferris, who designed the original datasets, and Simone Magri,
who has written Unix device drivers for them.

Details of the previous receiver interface were found in Sinclair et al. (1992) and
Reilly (1997). Further information was provided by Les Reilly, Henry Kanoniuk, Gra-
ham Moorey, and George Graves, in the form of design documentation (schematics etc)
and advice.

2.4 Xilinx Design Documentation

Xilinx publishes a series of application notes on their website dealing with a myriad
of design issues with Xilinx devices, including configuration schemes and design tips
for the different families of FPGA. The Xilinx libraries guide (Xilinx 1993) was an
invaluable published resource, as was the Xilinx databook (Xilinx 2002). Rather than
use Xilinx configuration PROMs, I chose to use Atmel In System Programmable (ISP)
parts. The Atmel (Atmel 2002) application note was of great use here. In addition
were the notes on the Atmel in system programmer (Atmel 2002) which I built rather
than buy.

2.5 RFI Mitigation

Good references on RFI mitigation and design practices, with practical advice and
a minimum of “sacred cows” proved hard to find. One useful book was White and
Mardiguian (1985), which contains a lot of good practical advice on coupling, ground-
ing, and shielding, with plenty of graphs providing good “rule of thumb” values for
different situations. This was an area where the experience of the senior engineers
within the receiver group proved invaluable.

2.6 Labwindows/CVI Coding

No work involving the C language is complete without a reference to the seminal work
on the subject, the “white bible” (Kernighan and Ritchie 1988). Whilst deceptively
thin, this volume serves as a definitive reference for C syntax and semantics. Stevens
(1994) provides a similarly useful introduction to TCP/IP, whilst Wright and Stevens
(1995) gives lots of details of code and algorithms for connecting computers via TCP.
The Labwindows Libraries Guide (National Instruments 1996) and Labwindows getting
started guide (National Instruments 1996) were also useful compiler references.

Chapter 3

Dataset Engine

The major difference between a thing that might go wrong and a thing

that cannot possibly go wrong is that when a thing that cannot possibly go

wrong goes wrong it usually turns out to be impossible to get at or repair.

Douglas Adams

3.1 Introduction

In order to control and monitor low bandwidth systems on the Compact Array, equip-
ment, such as receivers, conversion modules, power supplies etc. are connected to an
“AT Dataset” (Hall et al. 1992). The dataset partitions different control and monitor
points into registers, which are addressed using a request over an (typically RS485
twisted pair) asynchronous serial buss, as shown in Figure 3.1 (Ferris 1991).

Antenna Control

Computer

Dataset Dataset

Sensor SensorSensorActuator

RS-485 Bus

Ethernet to

Control Building

Figure 3.1: A diagram showing a typical dataset buss, with equipment connected
via the datasets to a serial buss, and thence to the antenna control computer. In
many implementations, a second module, called an interface, connects to a parallel
buss on each dataset in order to add extra control and monitor points to standard
dataset.

Until now, these devices have been comprised of a double width AT module, ap-
proximately 480 x 220 x 70mm, containing an 8031 microcontroller and associated

7

8 CHAPTER 3: Dataset Engine

electronics, including a 12 bit Analogue to Digital Converter (ADC). The D3 version
also included a multiplexer for the ADC. These devices are limited to a reasonably
modest number of control and monitor points, and are also limited to 38.4kbps.

Figure 3.2: A photo of a “D2” dataset module. These units have provided sterling
service to the Compact Array since their design in the 1980s. Parts for these modules
are becoming increasingly scarce as they reach the end of their design life.

3.2 AT Dataset Protocol

In order to replace the standard dataset hardware, it is necessary to replicate at least
a subset of the dataset protocol; the syntax and semantics for formulating dataset
requests and responses.

A common thread in discussions about the dataset protocol revolves around the
suitability of the protocol for controlling CA antenna equipment. Before blindly dupli-
cating the protocol, it is perhaps useful to analyse the requirements of the connection
between equipment and ACC, lest a different scheme; for example Ethernet, is more
suited to the task.

The information transferred from the equipment is generally of a telemetry and
diagnostic nature (Hall et al. 1992), for example:

1. Dewar temperatures, vacuums, and helium pressures,

2. LNA bias voltages,

3. System configuration commands, such as attenuator and switch settings,

4. Conversion chain power levels, used for setting gain.

Across an entire antenna, there are of the order of 5,000 different control and
monitor points. Many of these are entirely static, so need only be accessed infrequently.
A subset (perhaps a few percent) are more important and are usually accessed every

CHAPTER 3: Dataset Engine 9

conversion cycle (approximately every ten seconds). A small number of points relate
to rapidly varying values (for example Water Vapour Radiometer levels) and are read
tens of times per second.

The aggregate data rate is of the order of 1000 points per second. Given a 16
bit data word (two bytes) and protocol overhead of circa 50%, this results in around
30kbps data rate.

So we may thus summarise the requirements for telemetry control and monitoring
on Compact Array antennas:

1. Highly spatially dispersed equipment, typically with moderate to low complexity.

2. Moderate data rates, of tens of kbps.

3. High data integrity.

4. Extremely low RFI.

5. Low cost.

6. Serviceability.

The RS485 buss is a useful standard on which to base the design, as it is simple
and uses inexpensive twisted pair cable. Numerous robust industrial transceivers and
modems are available which may drive an RS485 buss, at the modest data rates required
by the application.

Alternatives such as coax or twisted pair Ethernet prove unsuitable for the task,
as they tend towards higher data rates (with concomitant higher levels of RFI) and
Ethernet equipment tends to be more delicate and complex, being designed for data
center use rather than industrial environments. However it should be mentioned that
Ethernet is a clear choice in terms of implementation cost, being ubiquitous in the
computer network field.

3.2.1 Request Format

Details of the inner workings of the dataset protocol are not widely published. In order
to clarify the issue somewhat, this document summarises some of the information in
(Ferris 1991), as well as points learnt from discussions with Mr Ferris.

In order to communicate with a dataset, the buss master (typically the ACC) must
compose a request packet, and transmit this packet over the buss.

The request is sent bytewise in an asynchronous serial fashion. Information carried
in the request packet is shown in Table 3.1.

The Sync byte is used to signal the start of the dataset request packet. On reception
of this byte (0x16) all datasets on the buss prepare to receive a dataset address byte.

The Command/Monitor bit signifies the direction of data transfer, with a ‘1’ signi-
fying a command (data transfer from the ACC to the dataset).

The Test bit is not normally used, and should be set to ‘1’.

10 CHAPTER 3: Dataset Engine

Code Description Num. Bits Value
SYN Sync Byte (designates start of request packet) 8 0x16
CMD Command/Monitor Bit 1 0 - Monitor

1 - Control
Spare Spare Bit (not used) 1 1
DSA Dataset Address 5 0..31
FN Function Address 9 0..511
DATA Transferred data (0x0000 for monitor) 16 0..65535

Table 3.1: Dataset request packet composition

The Dataset Address (DSA) is a five bit value denoting which dataset on the buss
is being addressed. The length of this field sets an upper number of 32 datasets on any
given buss.

The Function Address (FN) is a nine bit value denoting the register that is being
addressed within the dataset. The length of this field sets an upper limit of 512 registers
within each dataset.

The final two bytes of the dataset request packet contain either data in the case of
a command, or else zeros in the case of a monitor request.

Special Characters

Request packets are sent as asynchronous serial data, with an eight bit byte, one stop
bit, and odd parity.

The Sync pattern (0x16) is treated as a special case. This pattern normally indicates
the start of a packet. It is possible that this bit pattern will appear in normal data or
address fields.

To account for this special case, a system of escape codes is used to replace control
characters in data and address bytes. in essence, an ESC character is sent, followed by
a code describing the bit pattern of the substituted data. The details for the request
packet are shown in Table 3.2.

Code Replaced Byte
ASCII ‘0’ (0x30) ESC (0x1b)
ASCII ‘1’ (0x31) SYN (0x16)

Table 3.2: Dataset request special characters

3.2.2 Response Format

When a dataset is validly addressed, in that it receives a valid Sync, and then a DSA
matching its own, it replies immediately with a response packet.

CHAPTER 3: Dataset Engine 11

Depending on whether the request is a command or monitor request, the dataset
will respond differently. For a monitor request, the dataset replies with the contents of
the addressed register, as shown in Table 3.3.

Code Description Num. Bits
ACK Acknowledge Byte (designates start of response packet) 8
DATA Transferred data 16

Table 3.3: Dataset monitor reply packet composition (no errors or warnings)

The dataset also replies to a command request, as verification that the dataset has
received the data. In this case, the packet is of the form shown in Table 3.4.

Code Description Num. Bits
ACK Acknowledge Byte (designates start of response packet) 8
ERR Contents of dataset error register 8
WARN Contents of dataset warning register 8

Table 3.4: Dataset command reply packet composition (no errors or warnings)

Error Response

In the case where a packet is received with an error, the dataset may reply with the
ACK code substituted by an NAK. In this case the response is as for a command, and
the contents of the error register are sent along with the NAK.

The VHDL implementation makes use of only a small subset of possible error con-
ditions, as many sources of errors, such as a watchdog timer timing out on the micro-
controller version of the dataset, are not meaningful for a hardware based device.

Table 3.5 shows all possible errors returned by the hardware dataset implementa-
tion:

Error bit Description
0 Not used at present (always returned as ‘0’)
1 Parity or Framing error in function address or data
2 Sync byte received when data expected
3 Invalid escape sequence received in function address or data
4 Not used at present (always returned as ‘0’)
5 Not used at present (always returned as ‘0’)
6 Not used at present (always returned as ‘0’)
7 Not used at present (always returned as ‘0’)

Table 3.5: Dataset error register bit allocations

Note that the dataset only replies with an error if it is correctly addressed. Should
the dataset receive a malformed Sync or DSA byte, it will simply flash an indicator on
its front panel (if it has a front panel) and wait for a valid Sync.

12 CHAPTER 3: Dataset Engine

Thus the most common response to a problem, be it baud rate mismatch, data
inversion, or other problem, is that the dataset does not reply to a request. In this
case, the ACC must implement some form of time-out, so that it can report problems.

Warning Response

The original dataset implementations had a number of conditions, such as a low back-
up battery, that would result in the dataset sending back a warning. In this case the
dataset functions as normal, except it substitutes ACK bytes in each response with
BEL bytes. Also the warning register (returned after each command request) will be
set to some value depending on the nature of the problem.

The VHDL implementation, being a simple hardware based device, has no conceiv-
able state where it could respond with a warning. Hence the dataset will never issue a
BEL, and the warning register will always be returned as ‘0x00’.

Special Characters

As for the request packet, several byte patterns are special, and are used as control
characters. Table 3.6 shows each of these. Note that although warnings are never issued
by the dataset, the BEL character is replaced by an escape sequence to maintain overall
protocol compatibility with earlier units.

Code Replaced Byte
ASCII ‘0’ (0x30) ESC (0x1b)
ASCII ‘2’ (0x32) ACK (0x06)
ASCII ‘3’ (0x33) BEL (0x07)
ASCII ‘4’ (0x34) NAK (0x15)

Table 3.6: Dataset response special characters

3.2.3 Packet Padding and Response Latencies

Due to the possibility of escape sequences in the request and reply packets, these
packets are conceivably of variable length. If this were allowed, the possibility exists
of a minimum length request packet being shorter than a maximum length response,
leading to buss congestion and mangled response packets on heavily loaded busses.

In order to avoid this problem, request packets are always padded with null (0x00)
bytes, so that they have the same (maximum) length.

The maximum request packet length would occur when the function address byte
is an escape sequence, as well as both data bytes. This means that the ACC transmits
an ACK, a DSA, and then a further six bytes, for a total of eight. In cases where this
doesn’t happen, the ACC must pad to at least eight bytes.

The response time of the dataset is also an important figure. If datasets wait for
variable times before they respond, then the possibility exists for a slow responding

CHAPTER 3: Dataset Engine 13

dataset to still be using the buss when a fast dataset starts responding to a subsequent
request. To avoid this possibility, the dataset must respond as soon as it is validly ad-
dressed. On the VHDL implementation, the dataset sends an ACK (or NAK) sequence
as soon as it recognises its own DSA.

3.2.4 Function Address Partitioning

Original datasets partition the control and monitor function address space (a total of
512 16 bit words) into a series of subsections, as indicated in Table 3.7 and Table 3.8
(Ferris 1997).

Function Type Base Range Index
Undefined 0
Single Bit Data 64 32 0..31
Addressed 8 Bit 96 64 0..31
Addressed 16 Bit 160 64 0..63
Decoded Addressed 8 Bit 224 4 0..3
Decoded Addresses 16 Bit 228 4 0..3
Reserved 232
Undefined 236
Word 256 4 0..3
Undefined 260

Table 3.7: Control function address partitioning (D3)

Function Type Base Range Index
Balanced Analog 0 8 0..7
Unbalanced Analog 8 56 0..55
Single Bit Data 64 32 0..31
Addressed 8 Bit 96 64 0..31
Addressed 16 Bit 160 64 0..63
Decoded Addressed 8 Bit 224 4 0..3
Decoded Addresses 16 Bit 228 4 0..3
Reserved 232
Undefined 236
Word 256 4 0..3
Undefined 260
Multiplexed Analog 288 64 0..63
Undefined 352

Table 3.8: Monitor function address partitioning (D3)

The millimetre receiver contains some 512 analog monitor points. Unfortunately
this does not fit within the prescribed multiplexed analog portion of the dataset func-
tion address space. Rather than have the millimetre receiver occupy eight dataset

14 CHAPTER 3: Dataset Engine

addresses (of a maximum of 32 on each buss) the decision was made to disregard
the function address partitioning and treat all addresses within the function space as
addressed 16 bit control and monitor points.

Thus, for all function addresses, the dataset block generates a 9 bit address, and
either transmits 16 bits of data, or receives 16 bits of data on its data buss.

Should an application require the function addresses to be partitioned, this is easily
accomplished by adding external logic to the dataset block.

3.2.5 Parallel Buss

The original dataset communicates with addressed devices via an eight bit buss. Sixteen
bit transfers are made in two bytes, with a high/low signal to signify which half of the
word is being controlled.

In order to simplify the buss, the VHDL dataset engine uses simple sixteen bit
transfers, and dispenses with the high/low signal. Should eight bit transfers be re-
quired, an additional state machine is available that interfaces an eight bit data buss
to the 16 bit VHDL dataset buss.

The timing relationships for the VHDL dataset are shown in Figure 3.3 and 3.4.

Address

Write

Stb

Data

286us 286us 286us 286us

Figure 3.3: VHDL dataset parallel buss monitor read timing. Note that each of
the time periods are dependant on the serial data rate. The example shown is for a
38.4kbps connection. Timings for other rates may be deduced by simply scaling the
times shown.

3.3 VHDL Coding

The new dataset engine was developed using Very high speed Hardware Description
Language (VHDL). This language allows the description of complex digital hardware
using a high level of abstraction and a relatively straightforward text based language.
The language supports decision constructs, such as if..then, as well as case decision
trees, and allows complex synchronous state machines to be designed simply, and with
a high level of reliability and guaranteed metastability.

In order to develop the dataset engine, the problem was split into two parts. Firstly,
a simple Universal Asynchronous Receiver and Transmitter (UART) was designed, to

CHAPTER 3: Dataset Engine 15

Address

Write

Stb

Data

286us 286us 286us 286us

Figure 3.4: VHDL dataset parallel buss control write timing. Note that each of
the time periods are dependant on the serial data rate. The example shown is for a
38.4kbps connection. Timings for other rates may be deduced by simply scaling the
times shown.

implement the eight bit, parity asynchronous communications layer with a minimum
clock division overhead.

Next, a layer was built on top containing the dataset protocol state machine, which
decodes data from the UART according to the AT dataset protocol.

Finally, a series of VHDL “test harnesses” were written in order to exercise the
dataset engine under different conditions, and to test its response under a wide range
of conditions, such as buss congestion and corrupted packets.

3.3.1 UART Design

Current datasets operate with either 38,400 bps or 4800 bps asynchronous serial data,
with the parameters shown in table 3.9.

Start Bits 1
Data Bits 8
Parity Odd
Stop Bits 1

Table 3.9: Dataset serial format

The VHDL dataset supports these standard rates, and also allows for higher data
rates, dependant on clock rate.

In order to minimise clock frequency, and thus keep RFI down, the UART design
was carefully considered with a view to reducing the necessary number of clock cycles
per bit.

Start Detection

To allow for errors in clock frequency between transmitter and receiver, it’s important
to start sampling data as close to the center of the start bit as possible. This is done by
sampling the serial line eight times each bit. Whilst the receiver is waiting for a start

16 CHAPTER 3: Dataset Engine

bit, a running buffer is kept of the last four samples. The rest state for the serial input
is a ‘1’, so a start condition is defined as “0b1000” in the running buffer. When this
pattern is recognised, the receiver then samples data every eight clocks thereafter. The
samples are thus taken near the center of each bit time. The requirement for sensing
three subsequent zeros also provides a degree of noise immunity to the receiver, as a
short noise spike is unlikely to start it.

Clock Divider

The dataset is designed to operate with clock frequencies of nominally 1.2288MHz to
4.9152MHz. In order to translate this frequency to eight times the desired baudrate,
a simple programmable divider is supplied, which will prescale the input clock by any
integer from 1 to 16.

A number of clock frequencies in this range divide neatly to standard baud rates,
as shown in Table 3.10:

Prescale 1.2288MHz 1.8432MHz 3.6864MHz 4.9152MHz
0000 153.6Kbps 230.4Kbps 460.8Kbps 614.4Kbps
0001 76.8Kbps 115.2Kbps 230.4Kbps 307.2Kbps
0010 51.2Kbps 76.8Kbps 153.6Kbps 204.8Kbps
0011 38.4Kbps 57.6Kbps 115.2Kbps 153.6Kbps
0101 25.6Kbps 38.4Kbps 76.8Kbps 102.4Kbps
0111 19.2Kbps 28.8Kbps 57.6Kbps 76.8Kbps
1011 12.8Kbps 19.2Kbps 38.4Kbps 51.2Kbps
1111 9.6Kbps 14.4Kbps 28.8Kbps 38.4Kbps

Table 3.10: Common baud rate dividers

For other clock frequencies and prescale values, the baudrate may be calculated
using Equation 3.1.

Baudrate =
fosc

8(Prescale + 1)
(3.1)

The standard clock frequency is 3.6864MHz. This is a commonly available oscillator,
and allows the same dataset to operate at 38.4Kbps (for compatibility on busses shared
with D1 etc datasets) and also to run at up to 460Kbps, to allow for higher transfer
rates.

In order to minimise RFI, it is also possible to clock the dataset at just 307.2KHz,
and have it operate on a 38.4Kbps buss.

3.3.2 Protocol Engine Design

In order to participate on a dataset buss, we need to be able to understand the protocol,
from the point of view of the dataset.

CHAPTER 3: Dataset Engine 17

Like with the UART, the protocol engine is effectively split into a receive state ma-
chine and a transmit state machine. The receive state machine communicates with the
transmit machine using the tx req variable, which triggers the transmit state machine
to send either a monitor reply packet or an error reply packet.

The receive engine makes use of the following states:

1. Idle: In this state the engine is waiting for the reception of an ACK from the
UART. it should ignore all other data.

2. Receive DSA: Reception of an ACK while idle invariably leads to the receive
DSA state. In this state we wait for the next byte from the UART, which
should contain the dataset address, and command/monitor bit. Whether we
pay attention to the rest of the packet depends on whether the dataset address
received matches our own. Also note that the most significant bit of the function
address is transmitted with this byte. This must be saved for future reference.

3. Receive Function: After the DSA byte, the next byte transmitted by the ACC is
the function address. This address is simply copied out onto the address lines.

4. Receive Function after ESC: Should the receive function state receive an ESC,
this state is triggered. The receiver simply reads the next byte, and decodes it
accordingly.

5. Receive High Data: After receiving the function address, the request packet
contains the high data byte for a command, or else nulls for a receive.

6. Receive High Data after ESC: Should the receive high data state receive an ESC,
this state is triggered. The receiver simply reads the next byte, and decodes it
accordingly.

7. Receive Low Data: The packet finishes with the low data byte, or else nulls for
a monitor request.

8. Receive Low Data after ESC: Should the receive low data state receive an ESC,
this state is triggered. The receiver simply reads the next byte, and decodes it
accordingly.

The protocol engine makes decisions in each state as to how to proceed with the
transfer, and drives the transmit state machine accordingly. If a framing or parity
error is received in the first two bytes, the engine ignores them and goes back to the
idle state, waiting for the next SYN byte. Errors in subsequent bytes result in an error
packet being requested, with the error flags set accordingly.

The transmitter state machine makes use of the following states in order to send
the reply packet:

1. Idle: The transmitter monitors the tx req variable. If tx req is send ack then the
transmitter goes to the send ack state. If tx req is send err then the transmitter
goes to the send err state.

18 CHAPTER 3: Dataset Engine

2. Send ACK: In this state the transmitter loads the UART with the ACK code,
and then waits for the UART to signal that it is free before going to the send high
state (for a monitor request) or the cmd err state (for a command request).

3. Send High: This state latches the high byte on the data buss and sends it. If the
byte to be sent is a reserved code, it instead sends an ESC sequence and goes to
the send high2 state, where the byte is sent, appropriately coded.

4. Send Low: This state latches the low byte on the data buss and sends it. If the
byte to be sent is a reserved code, it instead sends an ESC sequence and goes to
the send low2 state, where the byte is sent, appropriately coded.

5. Send NAK: The Send NAK state is triggered when a request is received with an
error in the function address or data bytes. The transmitter must send an NAK
code, as well as the err and warn registers, which are loaded according to the
error.

6. Unload: Each of the error or ACK paths terminate with this state, which simply
waits for the UART to unload before returning to the idle state. This ensures that
packets do not become corrupted when, for example, a valid packet is received in
the middle of an error reply.

3.3.3 Simulation and Testing

In order to faultfind operation of the dataset engine, a series of test harnesses were
written for it, again in VHDL. These harnesses included simple commands to sequence
through operations, such as supplying a valid request packet to the engine, then delib-
erately malformed packets, etc. while also simulating the operation of external devices
connected to the dataset.

When compiled and run, the simulation yielded a simple waveform trace, much
like that found on a logic analyser, which could then be traced through in order to
determine correct operation, or in the case of errors, used to track down the source of
problems.

Once the dataset engine was tested with a range of simulated data, it was then
programmed into an interface card, and tested using a PC, with a simple dataset test
program written in Labwindows/CVI.

As implementations were developed using the engine, these too were tested, gen-
erally on test hardware, using a PC running the test software. Of interest here was
the uncovering of a bug in the Labwindows serial communications routines, in that
Labwindows (and perhaps Windows generally) ignores parity errors in received data,
even when explicitly asked to report such errors via the serial drivers.

This problem was uncovered because the dataset UART transmitter neglected to
initialise its parity variable before each byte, so the parity of each byte was essentially
random. Months of testing under Windows showed no problems whatsoever, but when

CHAPTER 3: Dataset Engine 19

Figure 3.5: A screendump of the waveform output from a simulation of the VHDL
dataset. In this case the dataset is being tested along with additional code to transfer
eight bit items.

the interface cards were run under a Linux test system, parity errors abounded. Careful
inspection of logic analyser output illuminated the problem.

3.4 Schematic Instantiation

In order to make use of the dataset engine within schematic based designs, it was
necessary to build a Protel schematic component representing the dataset block.

RST

CLK

RXD

DSA<0>

DSA<1>

DSA<2>

DSA<3>

DSA<4>

DATA<0>

DATA<1>

DATA<2>

DATA<3>

DATA<4>

DATA<5>

DATA<6>

DATA<7>

DATA<8>

DATA<9>

DATA<10>

DATA<11>

DATA<12>

DATA<13>

DATA<14>

DATA<15>

ADD<0>

ADD<1>

ADD<2>

ADD<3>

ADD<4>

ADD<5>

ADD<6>

ADD<7>

ADD<8>

WR

STB

TXD

TXD_EN

BAUD<0>

BAUD<1>

BAUD<2>

BAUD<3>

PAR

ERR

U17

DATASET

Figure 3.6: The dataset schematic symbol. Pins on this symbol are related to the
VHDL dataset entity description.

The VHDL entity description provides information about how the component con-
nects to the outside world, such as the naming and type of all signals. It is thus a

20 CHAPTER 3: Dataset Engine

simple task to create a Protel schematic component with identical pins, and ensure
that the Xilinx compiler maps the correct netlist file when reading the design.

3.5 Summary

The ATNF has no previous experience with VHDL models, either for use in simulation
only or as synthesisable cores. The dataset engine synthesisable core, whilst useful
in its own right as a control structure for embedded equipment, has also provided a
thorough grounding in the use of VHDL both in a stand-alone sense, and combined
with a schematic entry process, such as is typically used at the ATNF.

The same development process used for creating the dataset engine has since been
applied to a number of other digital projects, such as ADC sequencers, cross-point
switch units, and has more recently been proposed for use in digital correlator designs.

Chapter 4

Receiver Interfaces

This is the rock-solid principle on which the whole of the Corporations

[IBMs] Galaxy-wide success is founded...their fundamental design flaws are

completely hidden by their superficial design flaws.

T.H. Nelson

4.1 General Interfacing Requirements

The millimetre receiver package is actually three receivers sharing a common dewar.
As such, a large number of control and monitor points are required.

In order to reduce the likelihood of interference between different receiver sub-
systems, and also to reduce the size of wiring bundles on the receiver package, the
interfacing task is subdivided into a number of different parts, namely:

• Electronics cage, providing control and monitor of dewar parameters (vacuum,
cryogenic temperatures, helium pressure, etc.), LNA bias voltages and currents,
power supplies, and translator control and monitoring,

• Water Vapour Radiometer, providing monitoring of the four water vapour channel
power levels, as well as total received power,

• Conversion system, providing monitoring of RF levels through the conversion
chain, as well as configuration of various microwave switches and attenuators, to
set the IF bandwidth and levels,

• Local oscillator system, providing monitoring of the 160MHz local oscillator ref-
erence, the optical reference, and the local oscillator power, as well as control the
YIG oscillator control word.

These interfaces communicate with one another via an RS485 buss, carried on the
electronics cage backplane, and via cables to the conversion enclosure and water vapour
radiometer. The main electronics cage interface, designated the “F83”, in addition
to performing its own interface functions, also acts as a fibre modem, allowing all
electronics on the receiver package to be controlled and monitored via a simple fibre
pair.

21

22 CHAPTER 4: Receiver Interface

4.2 F83 Interface

The F83 interface is used for control and monitor of power supplies, LNA bias supplies,
and dewar cryogenic data, including cryogenic temperatures, helium supply and return
pressures, and dewar vacuum, as well as providing control for the translator, which
drives different feeds onto the telescope axis.

Previous receivers made use of an “F33 Dataset Interface” card, which contained a
number of simple latches and buffers, allowing a D2 dataset, connected via a parallel
address and data buss, to control various functions within the receiver electronics cage.
A number of other cards are standard on AT receivers to do such things as multiplex
bias monitor points and condition the vacuum sensor signals, etc.

Figure 4.1: A picture showing the F83 interface card, along with its RFI covers.
The fibre interfaces are toward the top of the picture, whilst the DIN91216 connector
is toward the bottom. In operation, the RFI covers are bolted either side of the PCB,
forming a sandwich.

In order to allow retrofitting of older receiver designs, the F83 is designed to have a
modicum of backward compatibility with the previous F33 + D2 dataset combination
that drives most AT receivers.

4.2.1 RFI Mitigation

Radio astronomy receivers are carefully designed to maximise receiver sensitivity within
their operating band. Whilst these receivers are coupled to large feedhorns, in order
to couple energy efficiently from the antenna system, sidelobes mean that the receiver
is susceptible to radiated fields within the vertex room. In order to minimise pickup
of Radio Frequency Interference (RFI) from electronic equipment, it is customary to
isolate all clocked components, such as datasets, samplers, and the like on a separate
floor, with shielding in between. Further, digital signals controlling the receivers are
usually static during the active part of a conversion cycle.

The F83 card introduces a 3.6864MHz oscillator into the same room as the mi-
crowave feeds. This oscillator is necessary for recovering data from the dataset asyn-
chronous serial stream. It is imperative to ensure that RFI from this oscillator is at a
low enough level that it does not interfere with observing.

CHAPTER 4: Receiver Interface 23

The worst case scenario for RFI on the Compact Array involves the L-band receiver.
This receiver operates down to 1.2GHz. The system temperature of the receiver system
(at 1.5GHz, and neglecting contributions from the cosmic background, the atmosphere,
and the antenna structure) is approximately 21K (Sinclair et al. 1992). Equation 4.1
(Christiansen and Högbom 1969) provides a means to convert this value to a detection
threshold:

(∆T) = QM
Tsys√
∆vt

(4.1)

Substituting an arbitrary value of 1 for Q (information factor) and 1 for M (ideal
receiver), and using a typical channel bandwidth (∆v) of 64KHz (64MHz IF, 1000
channels) over a 12 hour integration, gives a sensitivity threshold of some 3.2 ×10−4K.

This is expressed as a power using the following relationship:

P (dBm) = 10log(1000kBT) (4.2)

Where k is Boltzmans constant (1.38 × 10−23), B is bandwidth (64KHz) and T
is temperature. This comes out to some -185dBm. Such a figure should be taken
with a grain of salt, as it does not take into account the complex losses between the
interference source and the feed (instead assuming perfect coupling), and also neglects
the correlation isolation for such signals afforded by the phased array. However it still
provides some feel for the signal levels which may be detected by the receiver.

In order to keep radiated signals from the interface equipment to these low levels, a
number of strategies were employed to reduce emissions originating from the oscillator.
These were:

• Using as low a clock rate as practicable. This is facilitated by the VHDL UART
design, which has a ×8 clock, rather than the more usual ×16 clock of microcon-
trollers.

• Ensuring clock trace lengths were kept to a bare minimum, to minimise radiation.

• Using lossy ferrite “T” filters on clock and oscillator power.

• Pouring solid ground planes on all board layers, to minimise RFI coupling between
traces.

• Manufacturing a bolt on RFI shield for the PCB.

• Passing all I/O and power traces through lossy ferrite filters at the point where
they cross the RFI shield.

24 CHAPTER 4: Receiver Interface

4.2.2 PCB Design

The Printed Circuit Boards (PCBs) for the F83 interface were designed using Protel
Schematic and Protel PCB. These packages communicate with one another via netlists.
This software is part of the standard design suite used at the AT.

In order to reduce overall cost, a two layer design was used, with 7 thou (0.18mm)
minimum track width and separation, and 20 thou (0.5mm) minimum hole diameter.
These design rules allow the use of inexpensive local manufacturing services, and do
not generally require the use of bare board testing.

In order to make the most use of the reconfigurability of the Xilinx FPGA, the
schematic was modified to make the PCB layout as clean as possible.

The PCB conforms to DIN “Eurocard” standards. All I/O is either via a 128 way
DIN91216 connector to the receiver backplane, or via the fibre interface on the front
of the card. The PCB is shown in Figure 4.1

Analog to Digital Conversion

The Analog to Digital Converter (ADC) posed some interesting design challenges,
inasmuch as the original F33 card, which the F83 was supposed to provide backwards
compatibility with, had only a +5V supply, yet afforded an analog signal range of ±5V.

VIN
1

AGND1
2

REF
3

CAP
4

AGND2
5

DGND
14

D15(MSB)
6

D14
7

D13
8

D12
9

D11
10

D10
11

D9
12

D8
13

D7
15

D6
16

D5
17

D4
18

D3
19

D2
20

D1
21

D0
22

BYTE
23

R/C
24

CS
25

BUSY
26

VANA
27

VDIG
28

U21

LTC1605-2CG

C1

4n7

C39

10uF

C42

10uF

AnST

VCC

AnEN

AnBSY

+5V

D0

D1

D2

D3

D4

D5

D6

D7

HIGH

C4

2u2

C2

2u2

R1

200R 0.1%

R2

33K2 0.1%

ANALOG IN

D2

BZV55C4V3

D3

BZV55C4V3

Figure 4.2: The F83 ADC schematic. The ADC chip is able to digitise a ±4.096V
range, despite being powered by +5V.

A design using a DC-DC converter was considered, but rejected due to concerns
that the supply would generate excessive RFI. Instead, a 16 bit single supply ADC
(Linear Technologies 1999) was utilised, which uses a novel switched capacitor input
stage to enable it to handle a ±4.096V input.

In order to ensure that the ADC can keep up with the dataset engine, without
introducing delays that may cause conflict between buss devices, it’s necessary to look
at the time available in the protocol for returning data.

On reception of a valid request Dataset and Function Address, the dataset engine
then replies immediately with an ACK byte, and then the upper and lower eight bits
of the monitor point. The upper eight bits of the ADC result must be valid at the end
of the ACK byte, ten bit times after the function address is valid.

At 38.4Kbps (the upper speed used by the AT standard datasets) this corresponds
to 260µs. The ADC used is self clocking, and performs a conversion in just 10µsec

CHAPTER 4: Receiver Interface 25

(100Ksps). This implies an upper dataset buss limit of approximately 1Mbps, which
is ample for current and future requirements.

Careful attention to detail was observed with the ADC board layout, to ensure that
digital signals would not degrade the noise performance of the ADC. The ADC power
supply was bypassed with a 100µH inductor, and a series of 10µF ceramic capacitors.
These ceramic capacitors were chosen for their extremely low ESR and small size when
compared with similar value tantalum or electrolytic capacitors.

Digital I/O

The F83 card provides some 108 individual TTL level digital I/O lines. Each line is
individually driven by a Xilinx pin, for maximum flexibility in design.

The digital lines from the interface travel on a receiver backplane, with a distance
between transmitter and receiver of as much as a metre. Whilst high speed operation is
not important, low RFI contribution is a serious concern, as is current drive for expected
loads of up to ten TTL gates. A high level of noise immunity is also desirable.

Digital I/O from the interface is buffered using 74ACTHQ series buss transceivers.
These devices are well suited to the application, as they have slew rate limited drivers,
and 25Ω series resistors to minimise ground bounce and RFI. In addition, they make
use of a “keeper circuit” which holds receiver inputs at their current level with a weak
current, to improve the noise immunity. In this way, it’s possible to build the card
without pullups on the digital inputs, which would otherwise be difficult and tedious
to fit on the board.

Xilinx Configuration

The program for Xilinx FPGAs is stored off-chip in a programmable memory device,
which must be programmed before the interface is used.

In order to simplify the development process, an Atmel EEPROM device was used,
which is simply reprogrammed in circuit using a short cable from between the pro-
gramming board and a header on the interface card. The prototype interface located
the programming header outside the RFI shield, but the RFI filters played havoc with
configuration signals, so it was decided to relocate the header under the shield, neces-
sitating the removal of the shield to reprogram the card.

Fibre and Twisted Pair I/O

The F83 interface is the boundary point between the external (fibre optic) dataset
buss, and the internal (twisted pair) dataset buss.

In order to facilitate the F83s role as a fibre modem, the interface card has both
RS485 twisted pair drivers and optical fibre transceivers.

Signals for each are derived from the FPGA, for increased flexibility in use. This
means that, for example, F83 cards may be programmed as slaves on the twisted pair
buss, rather than driving it. This functionality was used in the Taiwanese AMiBA
(AMiBA 2002) prototype receiver, where extra I/O was desired.

26 CHAPTER 4: Receiver Interface

The twisted pair interfaces make use of Maxim MAX487 RS485 transceivers. These
devices use low input current receivers (enabling up to 128 devices on a buss) and slew
rate limited transmitters, which operate with reduced RFI at up to 250Kbps.

The fibre interfaces are based on a Diamond E2000 duplex fibre pair, which utilise
Honeywell HFE4047 fibre emitters and HFD3023 schmidt trigger PIN detectors.

The detector specifications are summarised in Table 4.2, whilst those of the trans-
mitter are in Table 4.1. Link budget calculations for the link are shown in Table 4.3,
using the transmitted power, receiver sensitivity, and nominal values for loss of various
interconnections.

Coupled Power -17dBm (into 50/125µm fibre
Drive Current 50mA
Peak Wavelength 850nm
Bandwidth 100MHz

Table 4.1: HFE4074 fibre transmitter specifications summary

Sensitivity -27dBm (from 50/125µm fibre
Min. Dynamic Range 15dB
Peak Wavelength 850nm
Max. Data Rate 5Mbps

Table 4.2: HFD3023 fibre receiver specifications summary

Transmit power -17dBm
ACC to pedestal bulkhead fibre (0.01km @ 2dB/km) 0.02dB
Pedestal bulkhead connector 0.30dB
Pedestal fibre splice 0.10dB
Fibre through az. and el. wraps (0.2km @ 2dB/km) 0.40dB
Sampler rack fibre splice 0.10dB
Sampler rack bulkhead connector 0.30dB
Sampler rack to receiver fibre (0.01km @ 2dB/km) 0.02
Power at receiver -18.24dBm
Noise margin 8.76dB

Table 4.3: Compact Array receiver interface fibre link budget

4.2.3 FPGA Design

The F83 interface card is mainly a programmable logic design. In order to communicate
with the antenna control computer, it includes a dataset engine, which controls other
logic within the FPGA via a simple parallel buss.

CHAPTER 4: Receiver Interface 27

Addresses from the dataset engine are decoded, and a variety of registers are ac-
cessed to control receiver systems.

One of the primary functions of the F83 is as a monitoring point for LNA bias and
dewar environmental parameters, such as vacuum, temperature, etc. These variables
are read in analog form, and are multiplexed via a series of bias mux and analog mux
cards in the receiver electronics cage.

In order to perform a conversion when needed, the F83 contains a simple ADC
sequencer, which sets up the analog multiplexer addressed, and then initiates an ADC
conversion after a settling period. The sequencer then monitors the ADC ready/busy
line, waiting for the conversion to finish, and finally transfers the data in two bytes
from the ADC to the dataset parallel buss.

This logic, being based on a simple state machine, is written in VHDL. A similar
model was also written to read the ADC, and then scale and offset the result to a 12
bit number, as per the D2 specification. This design was used along with a simplified
buss driver to “emulate” a D2 dataset + F33 interface combination, as used in the
multibeam receiver, as well as other previous AT receivers. This allowed RFI problems
caused by the proximity of the multibeam to its D2 dataset to be alleviated.

4.3 Conversion Interface

The conversion interface is used to control switches and attenuators within the down-
conversion system (Graves et al. 2002), and to monitor signal and local oscillator levels
within the conversion system.

This interface was originally intended to also control the local oscillator module,
but in order to minimise connections to the local oscillator module, the local oscillator
instead has its own dedicated interface, which is detailed later.

Due to fears of local oscillator leakage from the conversion system, the entire system
is sealed up within an RFI shield, and is controlled with just two twisted pairs, plus
an event pair.

As with the F83 interface, the conversion interface controls switches and attenuators
etc. via a number of TTL level digital lines. Unlike the F83, all analog multiplexer
functions for monitoring signal levels must be done by the interface.

4.3.1 PCB Design

Many of the same design constraints that applied to the F83 interface are also pertinent
with the conversion interface. Some elements of the design, for example RFI mitigation,
were somewhat relaxed however, as the entire conversion module is enclosed in an RFI
shield, with filtered feedthroughs used for all signal and power connectons.

Space constraints on the conversion module led to the use of a four layer board,
with 7 thou design rules for the interface. Much of the PCB real estate is occupied by
connectors.

28 CHAPTER 4: Receiver Interface

Figure 4.3: A picture showing the millimetre conversion interface card. The PCB
size is dictated largely by the connectors used to get signals and power on and off
the board. Note that this card does not have the strict RFI requirements of the F83,
and thus does away with the RFI covers and filters.

Whilst there was no need to add RFI shielding to the interface, attention was still
paid to minimising possibility for interfering fields being coupled off the board. As
with the F83 interface, this centered around the oscillator, and its connection to the
FPGA. This net was kept short, and solid ground planes were provided around and
under the oscillator and FPGA so that fields would preferentially couple to the planes.

Analog to Digital Conversion

The detector signal conditioning circuits used for the conversion system use differential
signals. In order to accommodate these signals, the analog multiplexer was doubled up,
and a differential to single ended converter was used before the ADC. This improves
the noise immunity of the sampler, because coupled common mode noise is rejected by
the differential amplifier. Otherwise, the ADC setup is the same as that used on the
F83 interface.

4.4 Local Oscillator Interface

The local oscillator interface is responsible for control and monitoring of the L86 local
oscillator module. This module was originally intended to be controlled by the con-
version interface, but concerns over possible intermediate local oscillator frequencies
leaking from the enclosure led to the design of a separate local oscillator interface, in
order to minimise wiring to this module.

The local oscillator module is comprised of a number of parts, including a fibre
receiver, with a power detector, and a PLL driven YIG oscillator, which is locked to

CHAPTER 4: Receiver Interface 29

Figure 4.4: A picture showing the local oscillator interface card. This card fits
alongside the local oscillator phase locked loop module, hence the odd shape. As
with the conversion interface, RFI is not a great concern, so the card has no covers
and no RFI filtering.

the fibre reference. The YIG frequency depends on a 12 bit digital control word, which
is supplied by the interface. In addition, the YIG coil current is monitored, so that a
simple under/over comparison may be made to determine if the oscillator is likely to
lose lock.

4.4.1 PCB Design and Packaging Issues

The design of the local oscillator interface follows closely that of the F83 and conversion
interfaces. RFI shielding is not as important for this module, as it is enclosed within
the L86 module, which is heavily shielded in order to keep local oscillator signals from
escaping. However, the same design techniques as used on the F83 board, such as
locating the clock chip close to the FPGA, and minimising clock trace length, have
also been employed on this board.

The primary challenge in the design of the local oscillator interface was one of
packaging it so that it would add a minimum of size to the L86 module. A four layer
board was designed to accommodate the Xilinx chip, config PROM, ADC, some muxes,
and power supply electronics in a scant 15cm2. Indeed the majority of space on the
PCB is occupied by two connectors, via which it communicates with the L86 and the
outside world.

4.5 Water Vapour Radiometer

The Water Vapour Radiometer (WVR) (Abbott and Hall 1999) is an experimental
system intended to increase the upper frequency limit of the Compact Array under less
than ideal seeing conditions.

The placement of the Compact Array, in Northwestern NSW, whilst being close to
optimum for centimetre wave observing, is too low in altitude and high in humidity for
good year round millimetre observing.

Water vapour has a higher dielectric constant than dry air, having the effect of
delaying microwave and millimetre wave signals (as well as attenuating them except
in certain bands). In areas of relatively high humidity, the density of water vapour in
a given column of atmosphere varies markedly from place to place. The result with a
synthesis telescope is decorrelation, and subsequent loss of signal, at higher frequencies.

30 CHAPTER 4: Receiver Interface

By accurately measuring the density of water vapour in the beam for each antenna,
it is hoped that the phase shift on the astronomical signal introduced by the water
vapour can be cancelled out by the correlator, thus improving the system tolerance to
atmospheric water vapour.

The method used in the millimetre receiver to measure water vapour consists of a
simple offset feed, with a low noise amplifier, followed by four simple TRF receivers,
centered on different bands around 26GHz.

The signal level in these bands approximate the density of water vapour within the
received beam. The WVR interface thus digitizes the output of each of the detectors,
along with a number of other parameters that may affect the system, such as LNA
temperature and feed temperature.

4.5.1 PCB Design

The PCB design methodology adopted for this interface was as for the F83. As with the
F83, great care was exercised to ensure that RFI, predominantly from the oscillator,
was not carried outside the enclosure. To these ends, all signals in and out of the
interface are filtered with RFI suppression filters, and a tight fitting RFI shield was
designed and fabricated.

Figure 4.5: The interface card for the Water Vapour Radiometer.

The WVR interface connects to the receiver via a simple 9 pin D connector. Power
(±20V) and all other signals are carried on a 2 row DIN connector.

The WVR assembly was originally designed with the intention that the analog
signals (±10V differential) would be carried on a cable to the main receiver backplane.
However, tests showed that the 16 bit ADC on the receiver electronics package wasn’t
up to the task. In order to avoid a costly redesign of the WVR package, the interface
board was designed to fit within the enclosure, above the WVR power supply board.

CHAPTER 4: Receiver Interface 31

Analogue to Digital Conversion

Initial system tests using a National Instruments 16 bit data acquisition card indicated
that the quantization noise in this system was a major contributor to total system noise.
Thus, in order to ensure that quantization errors did not adversely effect performance,
the digitizer was specified with a minimum SNR of 90dB, or 15 bits.

This specification, when teamed up with the requirement to sample all channels
in under 100 milliseconds and the need for high levels of long term system stability,
proved a daunting challenge.

A survey of available ADCs revealed that most 16 bit chips only guaranteed typically
14.5 effective bits SNR. In order to guarantee 15 bits SNR, a 24 bit delta-sigma ADC
chip was chosen as the core of the design. This device, an ADS1252 (Texas Instruments
2000), guarantees 18.6 bits effective resolution over temperature, at a sample rate of
some 40Ksps.

It was important when designing the ADC signal conditioning circuitry (shown in
Figure 4.6) that the SNR specifications not be compromised by noisy input switches
and op-amps. Similarly, variations with temperature were to be minimised, in order to
reduce the effect of the periodic air-conditioner cycle on the system.

2

3

1

8

6

7
4 5

U18

AD620

R6

30K1 0.1%

R7

10K0 0.1%

+15V

-15V

+15V

C21

1u 10V

2V5REF

C32

100n 25V

C33

100n 25V

C29

3u3 10V

ADC_CLK

ADC_DOUT

ADC_SCLK

NR
3

GND
4

TRIM
5

VOUT
6

VIN
2

U20

MAX6325

C31

470n 25V

2

6

1

7
4

8

3

U21

OP-177

+VIN
1

-VIN
2

+
V

D
D

3

CLK
4

DOUT
5

SCLK
6

G
N

D
7

VREF
8

U22

ADS1252C20

100n

AN+

AN-

+5V

+15V

-15V

N1A
19

N2A
20

N3A
21

N4A
22

N5A
23

N6A
24

N7A
25

N8A
26

N8B
4

N7B
5

N6B
6

N5B
7

N4B
8

N3B
9

N2B
10

N1B
11

COMA
28

COMB
2

EN
18

A0
17

A1
16

A2
15

V
+

1
V

-
2

7

G
N

D
1

2

U16

MAX307CWI

+15V

-15V

MUX_A_EN

MUX_A0

MUX_A1

MUX_A2

ANI1+

ANI1-

ANI2+

ANI2-

ANI3+

ANI3-

ANI4+

ANI4-

ANI5+

ANI5-

ANI6+

ANI6-

ANI7+

ANI7-

ANI0+

ANI0-

Figure 4.6: A schematic diagram showing the signal conditioning circuitry, ADC,
and associated reference for the WVR. Note that this figure is slightly inaccurate,
as it omits the second multiplexer, but is adequate to illustrate the design principles
used.

The analog inputs are thus multiplexed with a pair of MAX307 differential 8 to 1
multiplexers. These use low on-resistance switches, of just 60Ω, minimising additional
noise contribution by series resistors in the input stage.

The selected signal then passes through an AD620 differential amplifier, to convert
to a single ended signal centred around +2.5V. The AD620 has a low input noise
of 70nv/

√
Hz (Gain = 1), as well as an input bias current of 1nA. When combined

32 CHAPTER 4: Receiver Interface

with the MAX307 input resistance, the noise contribution is approx 3µV pk-pk (0.1 to
10Hz). This equates to around 22 bits, or 8 LSB.

The signal is next divided by four by a simple voltage divider, in order to scale it to
the correct ADC range, and buffered by an OP177 precision low noise op-amp, before
being input to the ADC. The OP177 maintains the low noise levels of the differential
amp.

The voltage reference is based around a MAX6325 precision reference, with 3ppm
accuracy over temperature. The MAX6325 offers access to the reference element, so
that noise may be reduced by the use of a large value capacitor (in this case a 1µF
ceramic).

Of course, it is necessary to follow strict layout guidelines in order to preserve the
specs of these components, paying particular attention to the separation of analogue
and digital ground planes on the board, and ensuring that no traces cross the planes
to couple digital noise into the analogue subsystem.

The result, as shown in Figure 4.7 is an impressive quantisation SNR of 110dB, or
18.5 effective bits.

Figure 4.7: A histogram showing the distribution of samples from the 24 bit WVR
ADC, when recording data from a precision 50mV reference. Each bin is 80 µV or
67 ADC counts. The standard deviation of this data is 24 µV (110dB SNR)

4.5.2 FPGA Design

The main additional component required in this interface was a sequencer for the
analog to digital converter. A serious issue in the design of the sequencer is that the
ADC is far too slow to perform a conversion during a normal dataset request-response
interval. In addition, the 24 bit data returned by the ADC will not fit into a 16 bit
dataset register. Further, the ADC has no “conversion start” command.

CHAPTER 4: Receiver Interface 33

The solution to these problems lay in continually reading all analog inputs one after
the other, and storing the results in temporary registers, which may be read as desired.

This method has the drawback of introducing a measure of indeterminacy in the
timing of the sample, as well as consuming a considerable amount of Xilinx resources
for the registers necessary.

The timing jitter turns out not to be a serious concern, as it is masked to some
extent by software timing jitter in any case, and by significant filtering on the sampled
data, both before the interface, and in software post-processing.

The sequencer is designed in VHDL, and is a simple state machine, composed of
a counter which drives the multiplexer to select one of the eight inputs, and a clock
generator for the ADC, which clocks the converter at 1/6th of the crystal frequency
(614.4KHz).

For each input, eight successive conversions are performed. All but the last are
discarded. This is necessary because the ADC contains digital FIR filters, which are
six conversions long. When a step input is applied, as with switching from one voltage
to another, six conversions are necessary before the ADC settles down.

The result is that the sequencer updates all eight registers once every 20msec. This
rate was not chosen by accident, but rather gives a high degree of 50Hz mains frequency
rejection to the system.

The final part of the design is a simple shift register to reconstruct the serial output
of the ADC into a parallel form.

When reading a 24 bit register, a scheme was developed to allow 24 bit reads while
ensuring that the high and low order data was always from the same conversion. The
high order 16 bits are read first by a dataset monitor request. Concurrently with the
read, the low eight bits from the relevant register are placed in a temporary register,
which may then be read at a different address. In this way, the converter may be
treated as an accurate 16 bit converter in one read, or as a 24 bit converter in two.

4.6 Testing

In order to simplify testing of these various interfaces, they were tested in a number
of different ways at various points in their development to ensure that they worked as
expected.

As a rule, the FPGA design paralleled that of the physical interface boards. Ele-
ments of the FPGA designs, such as the dataset engines and various ADC sequencers,
were simulated stand alone using a VHDL synthesis package, before any hardware was
built.

Whilst designing the PCBs, design checks were made both during schematic devel-
opment, and during board design. In the case of the schematic design rule check, the
test flagged such items as:

• Multiple outputs driving a common net.

• Unconnected inputs, or nets with no source.

34 CHAPTER 4: Receiver Interface

• Unconnected power nets.

• Duplicated designators etc.

Whilst these tests are by no means exhaustive, they give some idea that the
schematic is a true representation of the design.

Next, as a final stage in PCB design, a second design rule check was run on the
PCB design. This check tested the PCB against the loaded netlist, and flagged errors
such as:

• Footprint mismatches between PCB and schematic.

• Unrouted or partially routed nets.

• Clearance violations and shorts between nets.

• Track widths not within design rules.

Of course the creation of a reasonable PCB layout depends heavily on generating
workable, sensible design rules for features, such as signal and power net track widths,
clearance constraints, via size, etc.

Finally, once the prototype boards were constructed, they were powered up and
programmed, and then test software was loaded into the FPGAs to exercise their
various functions.

Figure 4.8: The F83 interface test board, which proved an invaluable tool for chas-
ing PCB soldering problems amongst the thousand of soldered connections on each
F83 interface.

One area that proved troublesome was the RFI filters on the F83 cards, which
were difficult to solder, resulting in a large number of dry joints or bridged pins and
subsequent frustration. In order to effectively and quickly test the digital I/O lines
on the F83 cards, a test board was built, which the F83 plugged into. This board

CHAPTER 4: Receiver Interface 35

contained an LED for each digital I/O line. Test software was loaded into the F83
card which simply displayed a moving bar on the LEDs, making shorts and opens very
obvious because of disruptions in the LED pattern.

As RFI emanations were identified in the design specifications as a major concern,
the F83 card was also tested extensively to ensure that the RFI levels were within
acceptable limits. The RFI performance was measured on a prototype F83 card, with
RFI covers in place, and using a 1.2288MHz oscillator as a timing reference. The
emitted field was sampled at a distance of 2cm from the backplane connector, using
a broadband Rhode & Schwartz E-Field probe, and wideband LNA (100KHz-2GHz,
30dB gain, 3.5dB noise figure). The test setup (with an unshielded card) is shown in
figure 4.9.

Figure 4.9: The F83 interface, being tested for RFI emissions, using an E field
probe, LNA, and spectrum analyser.

The results of the RFI testing were extremely encouraging. Whilst it was possible
to find evidence of the oscillator harmonics, they were down in the spectrum analyser
noise, and required considerable work to display, with long sweep times. The results are
shown in Figure 4.10 for three frequencies; 480MHz, 960MHz, and 1.44GHz. Emissions
are around -125dBm below 1GHz, and drop to around -140dBm at 1.4GHz. Whilst this
is considerably more than the minimum detectable signal at 1.4GHz, this is unlikely to
cause problems unless the interface is placed within the primary beam of the telescope.

Of course, the final proof of operation of any device is in actual use. The final
stage of testing was to install the interfaces on prototype receivers and then to test the
receiver interfacing as a whole. To facilitate this effort, a number of programs were
written, as detailed in Chapter 5.

36 CHAPTER 4: Receiver Interface

Figure 4.10: Test plots from the F83 interface, with a 1.2288MHz oscillator and
RFI covers fitted.

CHAPTER 4: Receiver Interface 37

4.7 Summary

This chapter describes the design and construction of a number of different imple-
mentations of the dataset engine in hardware form. Each interface unit makes use of
programmable logic to house the engine, as well as other logic, and has peripherals
attached to add additional functionality.

In designing the F83 interface, careful attention was paid to minimising radiated
fields, so that it does not interfere with observing processes. It was also designed in
such a way that it provided an upgrade to existing receivers.

The WVR interface data acquisition circuit proved challenging to implement, in
order to minimise noise on the analog inputs. The result of this careful design was
an acquisition system with some 18.5 bits of effective resolution, more than enough to
ensure that quantisation noise was an insignificant contributor to overall WVR system
noise.

The local oscillator and conversion interfaces show just how small the interface
hardware can be made using multi-layer circuit boards and fine pitch SMT parts, and
provide a glimpse of the future directions the interfacing effort will take in the AT; one
of reducing the number of control wires in systems by locating small, cheap interfaces
close to the sources of data.

Each of these implementations follow a similar design process, whereby the system is
partitioned into manageable modules, and then the I/O requirements of each module
are identified, and an interface designed to suit. Testing is done in each case first
on a simulator, for VHDL components, then with specially constructed test jigs for
prototype hardware, and finally on the actual receiver system.

38 CHAPTER 4: Receiver Interface

Chapter 5

Test Software

C is often described, with a mixture of fondness and disdain varying

according to the speaker, as “a language that combines all the elegance

and power of assembly language with all the readability and

maintainability of assembly language”.

MIT Jargon Dictionary

5.1 Overall Requirements

The code developed as part of this project was done so more for diagnostic and testing
processes than for final use. A large software suite already exists to control observations
with the Compact Array, and in routine use, it is anticipated that this software will
also encompass the hardware described in Chapter 4.

That being said, however, two important points led to the need to develop some
semblance of control and monitoring software which is independent of the main online
code. These are speed of development, and the need for an independent “arbiter” of
system functionality.

This last point is brought about by the concurrent upgrade of antanna control
computers, from LSI-11 based systems to industrial PC machines running the pSOS
real time operating system. It was felt that some rudimentary independent driving
software for the receivers would be helpful in diagnosing both receiver hardware and
ACC software problems.

The language used for development of this code was National Instruments Labwin-
dows/CVI (National Instruments 1996). This language was chosen for the following
reasons:

1. We already owned a copy, and I was proficient in its use,

2. The languages’ C base meant we could use pre-existing dataset drivers,

3. The language includes a range of useful instrumentation GUI “widgets” which
would simplify development of control panels, etc.

39

40 CHAPTER 5: Test Software

4. Unlike its close cousin, Labview, Labwindows/CVI code is compiled, and runs at
reasonable speed on modest hardware.

5.2 Dataset Libraries

As stated previously, existing dataset libraries were used as the basis for much of the
test software. These libraries have been developed over the last fifteen years or so in
order to allow control of equipment connected to the usual “D1”, “D2” etc datasets.
Whilst the VHDL “dataset engine” was designed as a software compatible replacement
of the older datasets, due to differences in implementations, some thought was still
needed in the use of the libraries.

The best example is the way original dataset functional address space was parti-
tioned into ranges, for example “16 bit addressed” range etc. The libraries are based
on this partitioning, and contain functions of the following form:

int Addressed_8_Bit_Out(int ds_address, int control_point,int data_out)

which allow access to the relevant subset of the functional address, and perform
meaningful bit masking etc. on data transferred. While the possibility exists of building
additional logic around the dataset engine to implement these ranges (as indeed was
done in the multibeam dataset replacement), by and large the ranges are dispensed
with.

This means that the most useful functions in the dataset libraries are the slightly
lower level “Initialise_Dataset” (used to open the comm port), “SendMessage”
(which formats a request and sends it on the selected comm port), “ReadResponse”
(waits for a response to arrive and decodes it), as well as “Close_All_Datasets”.
Using these functions, the system may be thoroughly tested.

5.3 Dataset Test Code

The dataset test panel was the first program written for debugging the dataset connec-
tion, during development of the dataset engine. This code has been revisited numerous
times, as different problems were encountered with the interface hardware, in order to
make it display more meaningful information about the link.

Figure 5.1: A screendump showing the dataset test panel. The last two attempts
at communication were unsuccessful, as shown in the history display.

CHAPTER 5: Test Software 41

This code presents the user with a simple control panel (shown in Figure 5.1), in
which dataset transactions may be made, and the results displayed. The user is able
to set comm ports and baud rates with pull down menus. In order to debug remote
TCP/IP connected systems, a version even exists whereby the server is run on the
machine connected to the dataset buss, then a client is able to drive the server, and
thus exercise the buss.

5.4 Receiver Monitor Panel

The receiver monitor panel is a large diagnostic utility, which displays many of the
analog monitor points on a receiver, including such things as low noise amplifier bias
conditions for every stage on every amplifier, dewar parameters, power supplies, etc.
This is a large amount of information, so a selection must be made via a simple pull-
down menu as to which band is being monitored at a given time. The user interface
panel is shown in Figure 5.2.

Figure 5.2: A screendump showing the millimetre receiver monitor panel. The
panel is displaying actual telemetry, in this case from the receiver in CA02.

Considerable difficulty was encountered with this program in ensuring its respon-
siveness to the user interface. The program spends most of its time I/O blocked waiting
for responses from dataset requests, and is able to respond to the user only occasion-
ally. If a problem occurs, such as a non-responsive buss, the program would all but
hang, waiting for buss time-outs.

A solution to this difficulty lay in running the acquisition process and the user in-
terface in separate threads, which communicate via simple semaphores and a shared
memory scheme. The acquisition process is thus able to run flat out, updating indica-
tors as necessary, while a thread waits for user input.

This scheme of separate acquisition and user interface threads was so successful
that it has been used in all subsequent data acquisition programs.

42 CHAPTER 5: Test Software

5.5 Water Vapour Radiometer Code

The water vapour radiometer data gathering program is a good example of the way
small, simple code can grow in scope and size to incredible proportions. The program
was originally written as a means of gathering data from the water vapour radiometer,
via a National Instruments DAQ card, and dumping the data to disk, to facilitate
stability tests in the lab. It was never intended to be used in the final acquisition
system, but has run in various guises and on various hardware consistently ever since.
One memorable test run involved cable-tying laptop PCs running windows to the frame
for the L-band feed in the antenna vertex rooms, with a huge tangle of wires coming out
of the PCMCIA slot on the PCs, and an ethernet switch similarly cable-tied nearby.
Much was learnt in this test (over several months) about the deleterious effect of
Ethernet hardware on L-band observations.

5.5.1 Server

The WVR server is the core of the program. It performs periodic reads of all analog
channels in the water vapour radiometer, accurately time tags them, and stores them
on a local disk file in .csv format, an ASCII format that is simple to import into an
Excel spreadsheet. The general format is shown below:

Water Vapour Radiometer Logfile

15:05:33, 741.330000, 0.049686, ... -0.000944, -0.006514,

15:05:33, 741.430000, 0.049543, ... -0.000997, -0.006151,

15:05:33, 741.530000, 0.049562, ... -0.001054, -0.006247,

The first entry for each line gives the time for the sample in HH:MM:SS format. Next
is the time from program start, in seconds, represented as a floating point number. This
entry is accurate to within about 1 millisecond, dependant on the PC system clock,
which may be locked up to an external reference using the ntp protocol. Subsequent
entries are the voltage (in volts) for each of the sampled inputs.

It is perfectly possible to run instances of the server entirely stand-alone, without
an ethernet link or client.

Most of the work involved in writing the server software was in ensuring that it
would reliably take data under a wide range of conditions, including disk congestion
(due perhaps to network access of previous or current data files), and dealing with the
vagaries of running under Windows, where processes can be inexplicably suspended for
hundreds of milliseconds for no good reason.

The server makes use of a dynamically allocated linked list queue, in order to buffer
data, as shown below:

typedef struct List {

double data[16];

char time[9];

CHAPTER 5: Test Software 43

Figure 5.3: A screendump showing the water vapour radiometer server graphical
user interface.

double sec;

struct List *next;

} list;

The server is heavily threaded, in that one thread acquires data and places it in
the queue, whilst another thread looks after the user interface. The queue can grow
as large as necessary (up to the memory size of the computer). Every ten samples,
the acquisition thread tries to open the data file and write out twenty samples (or else
the contents of the buffer). In this way, the data file is left closed most of the time so
other programs can access it while it is being written. The acquisition program will
simply attempt to access the file each ten samples, with its FIFO buffer growing each
time, until the file becomes available. At this point, the program writes out twenty
records each ten samples, so the FIFO length drops back to zero fairly quickly without
a sudden long data transfer disrupting the acquisition process.

In addition, a separate thread monitors the TCP/IP connection, and the user in-
terface, and allows a user to start and stop the aquisition, change the sample interval,
number of samples per record, etc.

5.5.2 Client

The water vapour radiometer client software acts as a simple remote control for the
server. It includes all controls and displays present on the server panel, with the ex-
ception of the running chart recorder display, and allows all aspects of data acquisition
to be controlled remotely from the central control room.

In order to minimise reliance on network connections, the actual data is dumped
to a disk locally on the server machine, and not transferred to the client. Each file is

44 CHAPTER 5: Test Software

Figure 5.4: A screendump showing the water vapour radiometer client “remote
control” panel.

limited to a number of samples, after which time the server closes the file and creates a
new one, with a name based upon the current date and time. In this way, it is possible
to transfer data from the server machine to the central site using normal operating
system file transfer procedures, transparently to the acquisition process.

TCP packets to control the server acquisition are of the following form:

struct msg_type

{

char msgHD;

unsigned char msglen;

char msg[512];

};

The header is a token to identify a command string. In this case it is simply ’71’
stored as a character. Next the message length is stored, and finally the actual data,
as an ASCII string.

Control messages are of the form:

COMMAND DATA

For example, the following command sets the sample interval to 100msec:

INTERVAL 0.10

The server replies to requests with a similarly framed packet, echoing the request
message and appending either <OK> or <ERR> depending on whether it was able to to
complete the request. For error conditions, it also attempts to provide some information
as to what is wrong.

In addition, the server periodically updates the client as to the state of acquisition,
echoing the number of samples taken and the file to which they have been written every
hundred samples, providing some reassurance that the process is working.

CHAPTER 5: Test Software 45

5.6 Summary

A number of different programs have been written to debug and prove operation of
different parts of the interfacing system. These programs were written in Labwin-
dows/CVI, mainly due to familiarity with the language and the convenience of being
able to run the diagnostics from a Windows notebook.

In the case of the water vapour radiometer, the test software served as the main
acquisition system for a period of time, reliably gathering data from the radiometers.

With the exception of the basic dataset test panel, all other monitor programs make
use of a threaded architecture to separate the acquisition and user interface portions
of the program, ensuring that neither interferes adversely with the other.

46 CHAPTER 5: Test Software

Chapter 6

Systems Integration and Project
Management

Planning is an unnatural process; it is much more fun to do something.

The nicest thing about not planning is that failure comes as a complete

surprise, rather than being preceded by a period of worry and depression.

Sir John Harvey-Jones

6.1 Overview

All these boards, modules, and software don’t exist in a vacuum. They must be con-
nected to one another in a robust, maintainable way, and integrated into the antennas.

Much of the top level design of this interfacing project was dictated by external
factors, such as availability of the telescopes for engineering work, the presence of
existing multimode fibres in the telescopes, etc.

This has proven to be the most difficult and time consuming part of the project,
as it often involves difficult modifications to the telescopes, which must be done in a
manner which does not affect observations.

6.2 Fibre Cabling

The millimetre receiver makes use of optical fibre cables already installed through
the telescope structure, running from the pedestal room, at the base of the antenna,
up through the azimuth and elevation cable wraps to the vertex room, where they
terminate in the side of the sampler rack.

In order to make use of these fibres, they must be extended to the upper floor
of the vertex room, and connected to the millimetre receiver package. To minimise
duplication of effort, these fibres are run in the same duct work as single mode fibres
carrying the local oscillator signal to and from the receiver.

The following tasks were necessary to make use of the current fibres:

47

48 CHAPTER 6: Systems Integration and Project Management

• Splicing new connectors on to the ends of the existing fibres, which are compatible
with the connectors used on the millimetre receiver.

• Installation of “Adaptaflex” flexible conduit between the sampler rack and top
floor distribution panel.

• Design and installation of a box for the top floor, in which to break out the
fibres for the millimetre receiver interface, millimetre receiver Local Oscillator,
and C/X interface.

Splicing of fibres and installation of conduit was performed mainly by technicians
on-site at Narrabri.

6.2.1 Fibre Mux

The fibre mux is a simple board that allows several fibres, plus a twisted pair buss, to
communicate with the ACC via a single fibre pair.

This board allows the one fibre connection to control all three receivers (via fibre)
plus the existing vertex room twisted pair dataset buss. This saves considerable expense
by reducing the number of fibres, plus reducing the number of connections.

Figure 6.1: The fibre mux board. This board allows the use of three fibre connected
devices, as well as a twisted pair RS-485 dataset buss on the one ACC fibre.

The design of this board was not especially difficult. All the board does is distribute
and buffer the transmitted data from the ACC to all ports, and drive the receive data
line back to the ACC with the logical OR of all inputs. In this way, requests from the
ACC are transmitted to all datasets, and any reply is relayed back to the ACC. No
attempt is made to prevent congestion, as the datasets should only reply when they
are addressed.

CHAPTER 6: Systems Integration and Project Management 49

6.2.2 Fibre Modems

The original proposal called for the development of a plug in fibre modem to occupy
the ACC I/O chassis. Due to time constraints, this subproject has been delayed until
after the millimetre receiver interfaces are otherwise commissioned.

In the meantime, the project makes use of Optical System Devices OSD-135 fibre
modems, which serve well with the use of an adapter on both fibres, to the E-2000
standard used by the rest of the project.

6.3 Project Management Issues

This has been a long and at times difficult project. Challenges were overcome in
many technical issues, such as how to achieve the required SNR in the water vapour
radiometer interface, and also in tackling a large, complex project, involving many
facets such as coordination of people, equipment, and time.

In order to make some sense of the project, the first step in the design process
was to divide the project up into a number of “modules”, which could be more easily
handled in isolation, rather than one large conglomerate mess. The specifications of
each module were defined early on, along with the way the modules connected together.

Development of individual modules was done in a traditional waterfall method,
whereby the specifications were thrashed out, then a then a prototype designed, con-
structed and debugged, and finally production units built for use on the array.

Perhaps the most difficult aspect of planning a project such as this is that when
timescales are originally estimated, one has a tendency to treat the project at hand
as though it is the only thing being done. In reality, other tasks and projects intrude,
causing timescales to stretch beyond those originally predicted.

Another issue is that when working with a large instrument such as the Compact
Array, one is not able to simply turn up to the telescope with some equipment and
install it. Instead, development efforts must mesh with regular maintenance periods
and installation shutdowns. Of course, these are the periods where staff availability at
the telescopes is at its lowest, with everyone busy dealing with the deluge of problems
that must be solved in the limited maintenance time.

The timelines developed in the proposal were adhered to in a general sense, if not
in detail. The main divergence from the proposal was that the conversion interface
front panel has been deferred to a later date, while the conversion interface itself was
effectively split in two, with local oscillator control functions separated. This allowed
the project to be completed within the allowable time, which was a hard limit in any
case due to compact array scheduling.

6.4 Summary

Significant additional work, beyond the design and construction of circuit boards and
the writing of software, are necessary before this equipment can be used in real life

50 CHAPTER 6: Systems Integration and Project Management

on the Compact Array antennas. Much of this work is uninteresting and fiddly, and
takes an inordinate amount of time to complete, especially when faced with significant
obstacles in the allocation of resources to the task, and the synchronisation of work
with other users of the facility.

The general development process followed in this project is one of top down design
in the first instance, and then a simple waterfall process for sub-projects identified in
the initial project outline. This process is a useful one for this type of equipment, in
that it neatly divides up work early in the process, and limits risk to other sub-projects
should difficulties be encountered with a design. The disadvantage with such a model
is that the overall parameters of the design are effectively “cast in stone”, and it is
difficult to make large changes to the overall system.

Chapter 7

Conclusions and Future Work

What we call the beginning is often the end. And to make an end is to

make a beginning. The end is where we start from.

T.S. Eliot

7.1 Conclusions

It is no easy task to summarise work done over such a period of time, encompassing
so many different disciplines. This is the first time I’ve been responsible for a project
of this breadth and depth, and it has been a very valuable learning exercise.

Many of the techniques used in this project are new to my workplace, most especially
the use of VHDL to design logic circuitry. Processes established for this project for the
use of VHDL in designs have since been used in the development of other equipment.

Further, much of the equipment designed as part of this project have found uses in
other applications. Most notably, the F83 interface has become a ubiquitous feature
of new receiver designs, and has been used in other organisations besides the ATNF.

This project started life as a “what if” session late one night whilst commissioning
interface equipment for the Parkes radiotelescope, and has since at times appeared
almost to have a life of its own. Through applying project management principles,
such as doing a work breakdown and timeline for the project fairly early on, much of
the unpredictability of the project was tied down. Much was also learnt about the
pitfalls associated with project management, such as the tendency for people to ignore
external influences when estimating time for completion of a given task.

On the whole, this has been a wonderful learning experience. Being able to start
with an idea and see it through to fruition as a significant project has been an exciting
thing to do.

7.2 Future Work

As intimated in the introduction to this thesis, this project is part of ongoing work.
As such, this may be seen as a “slice” of a much longer, larger project.

51

52 CHAPTER 7: Conclusions and Future Work

It is perhaps useful to bring out our crystal ball, and look into the future to see
where the interfacing work within the ATNF will take us. The incorporation of the
dataset engine within existing electronics has led us in a direction that shows great
promise for future equipment.

As with many fields, much of the cost of equipment for the ATNF is taken up
with interconnections. Using the original datasets necessitated running a huge num-
ber of connections across the backplane of a receiver or conversion system to control
equipment. The provision of a simple, small, cheap dataset that can be hidden in-
side modules allows us to reduce the amount of digital and analog wiring to a bare
minimum, with concomitant gains in system cost and reduction of noise pickup.

The close integration of this relatively high speed digital circuitry with sensitive
analog and RF equipment means that a number of challenges must be met, most
especially with reducing the RFI emanations from digital equipment, or with mitigating
their effects.

One possible method of reducing the effect of RFI on analog and RF circuitry may
be found in the use of spread spectrum clocks. The asynchronous serial comms used
by the dataset is tolerant of significant mismatches between transmitter and receiver
clocks. This allows us to dither the respective clocks, such that the energy in clock
harmonics is spread over a wide frequency range, and is thus less of an issue.

Finally, whilst this project marks the end of my Bachelor of Engineering studies, it
also marks the first significant project in my career. I hope to go on to further studies,
and undertake many more projects as my career unfolds.

Bibliography

Abbott, D., and Hall, P., “A Stable Millimetre-Wave Water Vapour Radiometer”, Dec 1999,
Journal of Electrical and Electronics Engineering, Australia. Vol. 19, no. 4, pp. 213-225.

AMiBA Array for Microwave Background Anisotropy - Project Homepage, Academia Sinica
Institute of Astronomy and Astrophysics, 2002 http://www.asiaa.sinica.edu.tw/amiba/

In System Programming Circuits for AT17 EEPROMS with Atmel and Xilinx FPGAs,
http://www.atmel.com/atmel/acrobat/doc3030.pdf

Atmel FPGA Configurator Programming Kit Manual,
http://www.atmel.com/dyn/resources/prod documents/DOC0642.PDF

The Australia Telescope Compact Array Users’ Guide, CSIRO ATNF, October 1999
http://www.narrabri.atnf.csiro.au/observing/users guide/html/atug.html

Christiansen, W. & Högbom, J. “Radiotelescopes”, 1969, Cambridge University Press, Cam-
bridge. p233.

DIST Press Release. 1995, “Visionary Science Projects Keep Australia at the Leading Edge”,
http://www.dist.gov.au/events/innovate/r1.html

Ferris, R. “Introducing the AT Data-sets”, 1991, Australia Telescope National Facility Inter-
nal Report.

Ferris, R. “AT Data Set Application Software Guide”, 1997, Australia Telescope National
Facility Internal Report.

Graves, G., Bowen, M., Jackson, S., and Sincliar, M., “The Conversion System for the Aus-
tralia Telescope Millimetre-Wave Receiver System”, 2002, Poster paper, Workshop on the
Applications of Radio Science, Katoomba.

Hall, P., Kesteven, R., Beresford, R., Ferris, R. and Loone, D. “Monitoring and Protection
Strategies for the Compact Array”, 1992, Journal of Electrical and Electronics Engineering,
Australia. IE Aust & IREE Aust. Vol 12, No. 2, pp 211-218.

Kernighan, B. and Ritchie, D. “The C Programming Language (2nd Ed.)”, 1988, Prentice
Hall, New Jersey.

Linear Technologies LTC1605-2CG 16 Bit ADC Data Sheet,
http://www.linear.com/pdf/160512.pdf

Moorey, G., Gough, R., Graves, G., Leach, M., Sinclair, M., Bolton, R., Bowen, M., Kanoniuk,
H., Reilly, L. and Jackson, S. “The Australia Telescope Millimetre Wave Receiver System”,
2002, Proc. Workshop on the Applications of Radio Science.

53

54 Bibliography

“Labwindows/CVI Standard Libraries Reference Manual”, 1996, National Instruments Cor-
poration, Austin.

“Getting Started With Labwindows/CVI”, 1996, National Instruments Corporation, Austin.

Reilly, L. “F33 Dataset Interface #1 Card”, 1997, Australia Telescope National Facility In-
ternal Report.

Sinclair, M., Graves, G., Gough, R., Moorey, G. “The Receiver System”, 1992, Journal of
Electrical and Electronics Engineering, Australia. IE Aust & IREE Aust. Vol 12, No. 2,
pp 147-160.

Smith, D. “HDL chip design : a practical guide for designing, synthesizing, and simulating
ASICs and FPGAs using VHDL or Verilog”, 1996, Doone Publications, Madison.

Stevens, R. “TCP/IP Illustrated Volume 1: The Protocols”, 1994, Addison-Wesley Publishing
Co., Massachusetts.

Synopsis Inc. “VeriBest FPGA Synthesis VHDL Reference Manual”, 1996, Synopsis.

Texas Instruments ADS1252 Data Sheet, http://www-s.ti.com/sc/ds/ads1252.pdf

White, D., and Mardiguian, M. “EMI Control, Methodology and Procedures”, 1985, Inter-
ference Control Technologies, Illinois.

Wright, G., and Stevens, R. “TCP/IP Illustrated Volume 2: The Implementation”, 1995,
Addison-Wesley Publishing Co., Massachusetts.

Xilinx Inc. “Xilinx XACT Development System Libraries Guide”, 1993, Xilinx.

Xilinx Inc. “The Programmable Gate Array Data Book”, 2002, Xilinx.

Yalamanchili, S. “VHDL Starters Guide”, 1998, Prentice Hall, New Jersey.

Appendix A

AT Dataset Engine VHDL Source

Include the source for the Dataset Engine.

A.1 UART Source

-- MNRF Interface VHDL Code

-- Asynchronous receiver/transmitter design

-- Revision: 1.3
-- Commenced: 23/8/99.
-- Last Modified: 5/6/01.
-- Author: Suzy Jackson sjackson@atnf.csiro.au

-- This package contains the bare bones hardware for an asynchronous
-- serial receiver (rx), and an asynchronous serial transmitter (tx)
-- which will hopefully be of some use to the MNRF generic interface.

-- A few notes about the design:

-- The current datasets use 38,400 bits per second (or 4800), 1 start
-- bit, 8 data bits, odd parity, and 1 stop bit. I see no dramatic
-- need to rock the boat here, so lets start with something that does
-- the same... Also it might be nice to allow for higher data rates.
-- With this in mind, the design should be OK for many standard
-- baudrates from 38400bps to 460.8Kbps using the same 3.6864MHz
-- clock. Should baudrates outside this range be desired, the
-- crystal frequency can be changed, or alternatively an external
-- frequency divider could be used to drive the clk input. The
-- Xilinx software gives a maximum clock rate of 25MHz for a
-- "typical" design, utilising a Spartan XCS40XL240-4, so with this
-- chip the baudrate may be pushed up to aroud 2.5Mbps.

-- Receiver Design:

-- At present, I’ve defined the clock to be 3.6864MHz. This divides
-- by 96 to give 38400Hz. We really need 8 clocks per bit, so I’ve

55

56 APPENDIX A: AT Dataset Engine VHDL Source

-- built in a nifty little predivide which can divide from 1 to 16,
-- giving us the following bitrates (given by bps =
-- fosc/(8*(prescale+1)))

-- Prescale: 1.2288MHz: 1.8432MHz: 3.6864MHz: 4.9152MHz:

-- 0000 153.6Kbps 230.4Kbps 460.8Kbps 614.4Kbps
-- 0001 76.8Kbps 115.2Kbps 230.4Kbps 307.2Kbps
-- 0010 51.2Kbps 76.8Kbps 153.6Kbps 204.8Kbps
-- 0011 38.4Kbps 57.6Kbps 115.2Kbps 153.6Kbps
-- 0101 25.6Kbps 38.4Kbps 76.8Kbps 102.4Kbps
-- 0111 19.2Kbps 28.8Kbps 57.6Kbps 76.8Kbps
-- 1011 12.8Kbps 19.2Kbps 38.4Kbps 51.2Kbps
-- 1111 9.6Kbps 14.4Kbps 28.8Kbps 38.4Kbps

-- This means that we really want to sample the data 4 prescaled
-- clocks after a start detection, and then every 8 prescaled clocks
-- to shift in the data, in order to guarantee that we’ll be within
-- the bit even if the transmit and receive clocks vary. If we
-- sample in exactly the middle of the first bit, then we can be out
-- by +/-5% (ie lots) before we get framing problems.

-- A start condition is defined by 0 on RXD for three divided clocks.

-- The p_err output is logic 1 for an error with odd parity.
-- Obviously, it’ll be logic 0 for an error with even parity. f_err
-- is the inverse of the stop bit, so it’ll often :) be 1 if there’s
-- a framing error.

-- The parity logic is done bit by bit in a serial fashion, rather
-- than all at once. Thanks to my ADS class for coming up with this
-- neat trick to reduce the gate count.

-- parity and framing error outputs are held until the reset is
-- pulled (rev 1.2)

-- Once we have a byte, we pull full high. Asserting clr will clear
-- this and arm us for the next byte. Obviously, the values in
-- out_data, p_err, and f_err are only guaranteed when full is high.

-- Transmitter Design:

-- The transmitter takes the form of a simple 10 bit shift register,
-- shifting out 0, data(0), data(1)...data(7), odd parity, 1. The
-- bits are shifted out on every 8th clock, so the clock rate for
-- this is the same as that for the receiver.

-- Random transmitter parity fixed (rev 1.3) by clearing the ptemp
-- bit at the start of each byte, rather than only when reset.

--***
-- Receiver Entity/Architecture Definition

APPENDIX A: AT Dataset Engine VHDL Source 57

--***

library ieee;
use ieee.std_logic_1164.all;
--use ieee.std_logic_arith.all;
use ieee.numeric_std.all;

entity rx is port (
rst, clr, clk, rxd: in std_logic;
prescale: in std_logic_vector (3 downto 0);
byte: out std_logic_vector(7 downto 0);
p_err, f_err, full: out std_logic);

end rx;

architecture archrx of rx is

signal cnt_reg: unsigned (6 downto 0);
signal pre_cnt: unsigned (3 downto 0);
signal check: std_logic_vector (3 downto 0);
signal temp: std_logic_vector (7 downto 0);
signal ptemp: std_logic;

begin
byte <= temp;
process (clk, rst)
begin
if rst = ’1’ then
-- reset condition
full <= ’0’;
cnt_reg <= "0000000";
temp <= x"00";
f_err <= ’0’;
p_err <= ’0’;
ptemp <= ’0’;
pre_cnt <= "0000";

elsif clk’event and clk = ’1’ then
if clr = ’1’ then

-- reset for next byte
full <= ’0’;
cnt_reg <= "0000000";
temp <= x"00";
f_err <= ’0’;
p_err <= ’0’;
ptemp <= ’0’;
pre_cnt <= "0000";
check <= rxd & rxd & rxd & rxd;

elsif pre_cnt = 0 then
if cnt_reg = 0 then

-- waiting for start condition - shift data thru start
-- detect register
check(3 downto 0) <= check(2 downto 0) & rxd;
if check = "1000" then

58 APPENDIX A: AT Dataset Engine VHDL Source

-- input 0 for three successive clocks indicates valid
-- start.

cnt_reg <= "0000001";
else

cnt_reg <= "0000000";
end if;

elsif cnt_reg = 73 then
-- check parity bit
ptemp <= ptemp xor (not rxd);
cnt_reg <= cnt_reg + 1;

elsif cnt_reg = 81 then
-- stop bit - assert full and check framing condition
full <= ’1’;
f_err <= not rxd;
p_err <= ptemp;
check <= "1111";
cnt_reg <= cnt_reg + 1;

elsif std_logic_vector(cnt_reg(2 downto 0)) = "001" then
-- shift in bit
temp(7 downto 0) <= rxd & temp(7 downto 1);
ptemp <= ptemp xor rxd;
cnt_reg <= cnt_reg + 1;

else
cnt_reg <= cnt_reg + 1;

end if;
end if;
if pre_cnt = unsigned(prescale) then

pre_cnt <= "0000";
else

pre_cnt <= pre_cnt + 1;
end if;

end if;
end process;

end archrx;

--***
-- Transmitter Entity/Architecture Definition
--***

library ieee;
use ieee.std_logic_1164.all;
--use ieee.std_logic_arith.all;
use ieee.numeric_std.all;

entity tx is port (
rst, go, clk: in std_logic;
prescale: in std_logic_vector(3 downto 0);
byte: in std_logic_vector(7 downto 0);
txd, empty: out std_logic);

end tx;

APPENDIX A: AT Dataset Engine VHDL Source 59

architecture archtx of tx is

signal cnt_reg: unsigned (3 downto 0);
signal pre_cnt: unsigned (6 downto 0);
signal temp: std_logic_vector (7 downto 0);
signal ptemp: std_logic;

begin
process (rst, clk)
begin
if rst = ’1’ then
-- reset condition
temp <= x"00";
cnt_reg <= "0000";
pre_cnt <= "0000000";
txd <= ’1’;
empty <= ’1’;
ptemp <= ’0’;

elsif clk’event and clk = ’1’ then
if pre_cnt = 0 then

if cnt_reg = 0 then
-- stop bit - assert empty, feed out stop bit, and stop
empty <= ’1’;
txd <= ’1’;
if go = ’1’ then cnt_reg <= "0001";
else cnt_reg <= "0000";
end if;

elsif cnt_reg = 1 then
-- wait for go pulse to be deasserted;
empty <= ’0’;
if go = ’1’ then cnt_reg <= "0001";
else cnt_reg <= "0010";
end if;

elsif cnt_reg = 2 then
-- shift out start bit & initialise temp & ptemp
txd <= ’0’;
empty <= ’0’;
temp <= byte;
cnt_reg <= "0011";
ptemp <= ’0’;

elsif cnt_reg = 11 then
-- shift out parity bit
txd <= not ptemp;
empty <= ’0’;
cnt_reg <= "0000";

else
txd <= temp(0);
ptemp <= ptemp xor temp(0);
empty <= ’0’;
temp(7 downto 0) <= ’0’ & temp(7 downto 1);
cnt_reg <= cnt_reg + 1;

60 APPENDIX A: AT Dataset Engine VHDL Source

end if;
end if;
if pre_cnt = unsigned(prescale & "111") then

pre_cnt <= "0000000";
else

pre_cnt <= pre_cnt + 1;
end if;

end if;
end process;

end archtx;

A.2 Dataset Source

-- MNRF Interface VHDL Code

-- Dataset RS485 Interface Section

-- Revision: 1.2
-- Commenced: 23/8/99.
-- Last Modified: 23/12/900
-- Author: Suzy Jackson sjackson@atnf.csiro.au

-- Requires: uart.vhd

-- This package contains logic to implement a really raw Dataset,
-- including receiver FIFO, address detection, some error detection,
-- etc.

-- Inputs:

-- rst: active high reset.
-- clk: 3.6864MHz clock (or 1.8432MHz with baudrates/2)
-- rxd: asynchronous receive line (to interface, from ACC).
-- baud(3 downto 0): divider for baudrate - bps = 460800/(prescale+1)
-- dsa(4 downto 0): dataset address (should be hardwired to a number)

-- Bidirectional:

-- data(15 downto 0): Data bus - tristate - gated by the wr output.

-- Outputs:

-- address(8 downto 0): address being read (or written).
-- wr: active high read*/write line.
-- stb: data strobe
-- txd: asynchronous transmit byte (from interface)
-- txd_en: active high transmit enable
-- (used for lighting up RS485 transmitter)
-- par: active high parity error signal.
-- err: active high framing error signal.

APPENDIX A: AT Dataset Engine VHDL Source 61

-- The length and validity of these signals is entirely dependent on
-- the comms (serial) speed. At a minimum (using a 38.4bps link at
-- maximum rate with a 3.6864MHz crystal) we have the following
-- diagrams:

-- Monitor Read:
-- ___________________
-- Address: XXXX___________________XXXX
--
-- Wr: XXXX___________________XXXX
-- ________
-- Stb: _________| |________
-- ______
-- Data: XXXX----XXXXX______>---XXXX

-- 1 2 3 45 6

-- T1-T2 min = 286 us (address setup time)
-- T2-T3 max = 286 us (read time - stb to data valid)
-- T2-T4 min = 572 us (minimum strobe length - data must remain valid)
-- T4-T5 min = 0 (minimum data hold time)

-- Control Write:
-- ___________________
-- Address: XXXX___________________XXXX
-- ___________________
-- Wr: XXXX XXXX
-- ________
-- Stb: _________| |________
-- ______________
-- Data: XXXXXXXXX______________XXXX

-- 1 23 4 5

-- T1-T2 min = 286 us (address setup time)
-- T2-T3 min = 270 ns (minimum time between data valid and strobe edge)
-- T3-T4 min = 572 us (minimum strobe length - data valid)
-- T4-T5 min = 286 us (minimum data hold time)

-- rev 1.1: Added err (framing error) and par (parity error) outputs,
-- so that we can monitor such things with LEDs.

-- rev 1.2: Changed the timing of the address strobe (STB) output,
-- to guarantee that data is valid before its leading edge,
-- as some equipment (F35 and F61) erroneously latch data
-- on the leading edge of the address strobe.
-- Also removed the HBE signal, as it was not really correct.
-- A separate state machine is now used to adapt the 16 bit
-- dataset engine to an 8 bit buss.

--***

62 APPENDIX A: AT Dataset Engine VHDL Source

-- Dataset Entity/Architecture Definition
--***

library ieee;
use ieee.std_logic_1164.all;
--use ieee.std_logic_arith.all; -- uncomment this line if synthesising
use ieee.numeric_std.all; -- uncomment this line if simulating

entity dataset is port (
rst, clk, rxd: in std_logic;
baud: in std_logic_vector(3 downto 0);
dsa: in std_logic_vector(4 downto 0);
data: inout std_logic_vector(15 downto 0);
add: out std_logic_vector(8 downto 0);
stb, wr, txd, txd_en, par, err: out std_logic);

end dataset;

architecture archdataset of dataset is

component rx port(
rst, clr, clk, rxd: in std_logic;
prescale: in std_logic_vector(3 downto 0);
byte: out std_logic_vector(7 downto 0);
p_err, f_err, full: out std_logic);

end component;

component tx port(
rst, go, clk: in std_logic;
prescale: in std_logic_vector(3 downto 0);
byte: in std_logic_vector(7 downto 0);
txd, empty: out std_logic);

end component;

constant ACK: std_logic_vector(7 downto 0):= "00000110";
constant BEL: std_logic_vector(7 downto 0):= "00000111";
constant NAK: std_logic_vector(7 downto 0):= "00010101";
constant SYN: std_logic_vector(7 downto 0):= "00010110";
constant ESC: std_logic_vector(7 downto 0):= "00011011";
constant ASC0: std_logic_vector(7 downto 0):= "00110000";
constant ASC1: std_logic_vector(7 downto 0):= "00110001";
constant ASC2: std_logic_vector(7 downto 0):= "00110010";
constant ASC3: std_logic_vector(7 downto 0):= "00110011";
constant ASC4: std_logic_vector(7 downto 0):= "00110100";

type rxstate_type is (idle, recv_dsa, recv_fn, recv_fn2,
recv_high, recv_high2, recv_low, recv_low2);

type txreq_type is (idle, send_ack, send_nak);
type txstate_type is (unload, idle, send_err, send_warn, send_ack,

send_high, send_high2, send_low, send_low2,
send_nak, cmd_err, cmd_warn);

signal rxbyte, txbyte, error: std_logic_vector(7 downto 0);

APPENDIX A: AT Dataset Engine VHDL Source 63

signal rxstate: rxstate_type;
signal txreq: txreq_type;
signal txstate: txstate_type;
signal rxfull, p_err, f_err, txgo, rxgo, cmd, txempty: std_logic;
signal bufdata: std_logic_vector(9 downto 0);
signal dataout: std_logic_vector(15 downto 0);

-- for SER_RX: rx use entity work.rx;
-- for SER_TX: tx use entity work.tx;

begin

SER_RX: rx port map (rst, rxgo, clk, rxd, baud, rxbyte, p_err,
f_err, rxfull);

SER_TX: tx port map (rst, txgo, clk, baud, txbyte, txd, txempty);

data <= dataout when (cmd = ’1’) else "ZZZZZZZZZZZZZZZZ";
stb <= ’1’ when (txstate = send_ack) or (txstate = send_low) or

(txstate = send_low2) or (txstate = send_high) or
(txstate = send_high2) or (txstate = cmd_err) or
(txstate = cmd_warn) else ’0’;

wr <= cmd;
txd_en <= ’0’ when (txstate = idle) else ’1’;
rxgo <= rxfull;
par <= p_err;
err <= f_err;

receive: process (clk, rst)
begin
if rst = ’1’ then
-- asynchronous reset condition
rxstate <= idle;
txstate <= idle;
txreq <= idle;
txgo <= ’0’;
dataout <= x"0000";
add <= "000000000";
txbyte <= x"00";
error <= x"00";
cmd <= ’0’;

elsif clk’event and clk = ’1’ then

case rxstate is

when idle => -- Wait for SYN character
if rxfull = ’1’ then

if (rxbyte = SYN and p_err = ’0’ and f_err = ’0’) then
-- SYN character - next byte should be dataset address
rxstate <= recv_dsa;

else
rxstate <= idle;

64 APPENDIX A: AT Dataset Engine VHDL Source

end if;
else

rxstate <= idle;
end if;

when recv_dsa => -- Get Dataset Address byte
-- note that we can’t get an escape in this byte.
if rxfull = ’1’ then

if (rxbyte(5 downto 1) = dsa(4 downto 0)
and p_err = ’0’ and f_err = ’0’) then

-- yay! We’re being addressed
rxstate <= recv_fn;
add(8) <= rxbyte(0);
cmd <= rxbyte(7);

elsif (rxbyte = SYN and p_err = ’0’ and f_err = ’0’) then
-- SYN character - abort. Next byte should be dataset add
rxstate <= recv_dsa;

else
-- not for us - wait for the next packet
rxstate <= idle;

end if;
else

rxstate <= recv_dsa;
end if;

when recv_fn => -- Get Function Address byte
if rxfull = ’1’ then

if (p_err = ’1’ or f_err = ’1’) then
-- malformed byte - send back a NAK.
error (1) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

elsif rxbyte = ESC then
-- escape character - function address in next byte
rxstate <= recv_fn2;

elsif rxbyte = SYN then
-- SYN character - abort. Next byte should be dataset add
error (2) <= ’1’;
txreq <= send_nak;
rxstate <= recv_dsa;

else
-- rxbyte contains function address
add(7 downto 0) <= rxbyte(7 downto 0);
rxstate <= recv_high;

end if;
else

rxstate <= recv_fn;
end if;

when recv_fn2 => -- Get Function Address byte after ESC
if rxfull = ’1’ then

if (p_err = ’1’ or f_err = ’1’) then

APPENDIX A: AT Dataset Engine VHDL Source 65

-- malformed byte - send back a NAK.
error (1) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

elsif rxbyte = ASC0 then
-- ascii 0 - byte is esc
add(7 downto 0) <= ESC;
rxstate <= recv_high;

elsif rxbyte = ASC1 then
-- ascii 1 - byte is syn
add(7 downto 0) <= SYN;
rxstate <= recv_high;

elsif rxbyte = SYN then
-- SYN character - abort. Next byte should be dataset add
error (2) <= ’1’;
txreq <= send_nak;
rxstate <= recv_dsa;

else
-- byte is broken - send back a NAK
error (3) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

end if;
else

rxstate <= recv_fn2;
end if;

when recv_high => -- Get High data byte
if rxfull = ’1’ then

if (p_err = ’1’ or f_err = ’1’) then
-- malformed byte - send back a NAK.
error (1) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

elsif rxbyte = ESC then
-- escape character - high_byte in next byte
rxstate <= recv_high2;

elsif rxbyte = SYN then
-- SYN character - abort. Next byte should be dataset add
error (2) <= ’1’;
txreq <= send_nak;
rxstate <= recv_dsa;

else
-- byte contains high data byte
dataout(15 downto 8) <= rxbyte(7 downto 0);
rxstate <= recv_low;

end if;
else

rxstate <= recv_high;
end if;

when recv_high2 => -- Get High data byte after ESC

66 APPENDIX A: AT Dataset Engine VHDL Source

if rxfull = ’1’ then
if (p_err = ’1’ or f_err = ’1’) then
-- malformed byte - send back a NAK.
error (1) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

elsif rxbyte = ASC0 then
-- ascii 0 - byte is ESC
dataout(15 downto 8) <= ESC;
rxstate <= recv_low;

elsif rxbyte = ASC1 then
-- ascii 1 - byte is SYN
dataout(15 downto 8) <= SYN;
rxstate <= recv_low;

elsif rxbyte = SYN then
-- SYN character - abort. Next byte should be dataset add
error (2) <= ’1’;
txreq <= send_nak;
rxstate <= recv_dsa;

else
-- byte is broken - send back a NAK
error (3) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

end if;
else

rxstate <= recv_high2;
end if;

when recv_low => -- Get Low data byte
if rxfull = ’1’ then

if (p_err = ’1’ or f_err = ’1’) then
-- malformed byte - send back a NAK.
error (1) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

elsif rxbyte = ESC then
-- ESC character - low_byte in next byte
rxstate <= recv_low2;

elsif rxbyte = SYN then
-- SYN character - abort. Next byte should be dataset add
error (2) <= ’1’;
txreq <= send_nak;
rxstate <= recv_dsa;

else
-- byte contains low data byte
dataout(7 downto 0) <= rxbyte(7 downto 0);
txreq <= send_ack;
rxstate <= idle;

end if;
else

rxstate <= recv_low;

APPENDIX A: AT Dataset Engine VHDL Source 67

end if;

when recv_low2 => -- Get Low data byte after ESC
if rxfull = ’1’ then

if (p_err = ’1’ or f_err = ’1’) then
-- malformed byte - send back a NAK.
error (1) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

elsif rxbyte = ASC0 then
-- ascii 0 - byte is ESC
dataout(7 downto 0) <= ESC;
txreq <= send_ack;
rxstate <= idle;

elsif rxbyte = ASC1 then
-- ascii 1 - byte is SYN
dataout(7 downto 0) <= SYN;
txreq <= send_ack;
rxstate <= idle;

elsif rxbyte = SYN then
-- SYN character - abort. Next byte should be dataset add
error (2) <= ’1’;
txreq <= send_nak;
rxstate <= recv_dsa;

else
-- byte is broken - send back a NAK
error (3) <= ’1’;
txreq <= send_nak;
rxstate <= idle;

end if;
else

rxstate <= recv_low2;
end if;

when others =>
rxstate <= idle;

end case;

case txstate is

when send_ack => -- Send ACK code
if (txempty = ’1’ and txgo = ’0’) then

txbyte <= ACK;
txgo <= ’1’;
txreq <= idle;
if cmd = ’1’ then

-- command - no need to send out byte
txstate <= cmd_err;

else
-- monitor - need to supply byte
txstate <= send_high;

68 APPENDIX A: AT Dataset Engine VHDL Source

end if;
elsif txempty = ’0’ then

txstate <= send_ack;
txgo <= ’0’;

else
txstate <= send_ack;
txgo <= ’1’;

end if;

when send_high => -- Send high byte
if (txempty = ’1’ and txgo = ’0’) then

txgo <= ’1’;
if (data(15 downto 8) = ACK or data(15 downto 8) = NAK or

data(15 downto 8) = BEL or data(15 downto 8) = ESC) then
-- gotta send out an ESC
txbyte <= ESC;
txstate <= send_high2;

else
-- out goes the byte
txstate <= send_low;
txbyte(7 downto 0) <= data(15 downto 8);

end if;
elsif txempty = ’0’ then

txstate <= send_high;
txgo <= ’0’;

else
txstate <= send_high;
txgo <= ’1’;

end if;

when send_high2 => -- Send high byte after ESC
if (txempty = ’1’ and txgo = ’0’) then

txgo <= ’1’;
if data(15 downto 8) = ESC then
-- send out ascii 0
txbyte <= ASC0;

elsif data(15 downto 8) = ACK then
-- send out ascii 2
txbyte <= ASC2;

elsif data(15 downto 8) = BEL then
-- send out ascii 3
txbyte <= ASC3;

else
-- send out ascii 4
txbyte <= ASC4;

end if;
txstate <= send_low;

elsif txempty = ’0’ then
txstate <= send_high2;
txgo <= ’0’;

else
txstate <= send_high2;

APPENDIX A: AT Dataset Engine VHDL Source 69

txgo <= ’1’;
end if;

when send_low => -- Send low byte
if (txempty = ’1’ and txgo = ’0’) then

txgo <= ’1’;
if (data(7 downto 0) = ACK or data(7 downto 0) = NAK or

data(7 downto 0) = BEL or data(7 downto 0) = ESC) then
-- gotta send out an ESC
txbyte <= ESC;
txstate <= send_low2;

else
-- out goes the byte
txstate <= unload;
txbyte <= data(7 downto 0);

end if;
elsif txempty = ’0’ then

txstate <= send_low;
txgo <= ’0’;

else
txstate <= send_low;
txgo <= ’1’;

end if;

when send_low2 => -- Send low byte after ESC
if (txempty = ’1’ and txgo = ’0’) then

txgo <= ’1’;
if data(7 downto 0) = ESC then

-- send out ascii 0
txbyte <= ASC0;

elsif data(7 downto 0) = ACK then
-- send out ascii 2
txbyte <= ASC2;

elsif data(7 downto 0) = BEL then
-- send out ascii 3
txbyte <= ASC3;

else
-- send out ascii 4
txbyte <= ASC4;

end if;
txstate <= unload;

elsif txempty = ’0’ then
txstate <= send_low2;
txgo <= ’0’;

else
txstate <= send_low2;
txgo <= ’1’;

end if;

when send_nak => -- Send NAK code
if (txempty = ’1’ and txgo = ’0’) then

txbyte <= NAK;

70 APPENDIX A: AT Dataset Engine VHDL Source

txgo <= ’1’;
txreq <= idle;
txstate <= send_err;

elsif txempty = ’0’ then
txstate <= send_nak;
txgo <= ’0’;

else
txstate <= send_nak;
txgo <= ’1’;

end if;

when send_err => -- Send error codes
if (txempty = ’1’ and txgo = ’0’) then

txbyte <= error;
error <= x"00";
txgo <= ’1’;
txreq <= idle;
txstate <= send_warn;

elsif txempty = ’0’ then
txstate <= send_err;
txgo <= ’0’;

else
txstate <= send_err;
txgo <= ’1’;

end if;

when send_warn => -- Send warning codes - not implemented.
if (txempty = ’1’ and txgo = ’0’) then

txbyte <= x"00";
txgo <= ’1’;
txreq <= idle;
txstate <= unload;

elsif txempty = ’0’ then
txstate <= send_warn;
txgo <= ’0’;

else
txstate <= send_warn;
txgo <= ’1’;

end if;

when cmd_err =>
-- Send error codes for command (no error condition exists)
if (txempty = ’1’ and txgo = ’0’) then

txbyte <= x"00";
txgo <= ’1’;
txreq <= idle;
txstate <= cmd_warn;

elsif txempty = ’0’ then
txstate <= cmd_err;
txgo <= ’0’;

else
txstate <= cmd_err;

APPENDIX A: AT Dataset Engine VHDL Source 71

txgo <= ’1’;
end if;

when cmd_warn =>
-- Send warning codes for command (no error condition exists)
if (txempty = ’1’ and txgo = ’0’) then

txbyte <= x"00";
txgo <= ’1’;
txreq <= idle;
txstate <= unload;

elsif txempty = ’0’ then
txstate <= cmd_warn;
txgo <= ’0’;

else
txstate <= cmd_warn;
txgo <= ’1’;

end if;

when unload =>
-- make sure we flush the transmit buffer
if (txempty = ’1’ and txgo = ’0’) then

txstate <= idle;
elsif txempty = ’0’ then

txgo <= ’0’;
txstate <= unload;

else
txstate <= unload;
txgo <= ’1’;

end if;

when idle =>
if txreq = send_ack then

txstate <= send_ack;
elsif txreq = send_nak then

txstate <= send_nak;
else txstate <= idle;
end if;

when others =>
txstate <= idle;

end case;

end if;
end process;

end archdataset;

A.3 F83 ADC Sequencer Source

-- MNRF Interface VHDL Code

72 APPENDIX A: AT Dataset Engine VHDL Source

-- F83 ADC Read Tool

-- Revision: 1.0
-- Commenced: 21/2/01.
-- Last Modified: 21/2/01
-- Author: Suzy Jackson sjackson@atnf.csiro.au

-- This package contains the hardware necessary to drive the
-- LTC1605-2 ADC as found on the F83 interface board.

-- Unlike adcread, which scales and offsets the result to maintain
-- some level of compatability with a D2 dataset, this code simply
-- presents the ADC data unmolested, in 16 bit signed format.

-- Inputs:

-- rst: Active high reset signal.
-- clk: Typically the 3.6864MHz system clock, but should be
-- fairly flexible.
-- adcrq: ADC request input. Should be driven from an address
-- decoder.
-- stb: Address strobe. Connect straight to the relevant
-- dataset module line. This line in conjunction with the
-- ane line enables the data tri-states.
-- adcdata: 8 bit muxed data input from ADC.
-- busy: Busy output from ADC (active low).

-- Outputs:

-- data: 16 bit Tri states containing result of the ADC conversion
-- anst: ADC conversion start pulse.
-- adcen: ADC enable line (active low)
-- anhigh: Select between bytes of ADC result.

--***
-- ADCRd16 Entity/Architecture Definition
--***

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all; -- uncomment this line if synthesising
--use ieee.numeric_std.all; -- uncomment this line if simulating

entity adcrd16 is port (
rst, clk, adcrq, stb, busy: in std_logic;
adcdata: in std_logic_vector (7 downto 0);
data: inout std_logic_vector (15 downto 0);
anst, adcen, anhigh: out std_logic);

end adcrd16;

architecture archadc of adcrd16 is

APPENDIX A: AT Dataset Engine VHDL Source 73

type sttype is (start, high, low, check, idle, finished, acq);
signal state: sttype;
signal result: std_logic_vector (15 downto 0);
signal delay: unsigned (5 downto 0);

begin

data <= result when (adcrq = ’1’ and stb = ’1’) else "ZZZZZZZZZZZZZZZZ";

with state select
anst <= ’0’ when start,

’1’ when others;
with adcrq select
adcen <= ’1’ when ’0’,

’0’ when others;
with state select
anhigh <= ’1’ when high,

’0’ when others;

process (clk, rst)
begin
if rst = ’1’ then

-- reset condition
state <= idle;
result <= x"0000";

elsif clk’event and clk = ’1’ then
case state is

when idle => -- wait for next valid strobe
delay <= "000000";
if (adcrq = ’1’ and stb = ’1’) then

state <= acq;
else state <= idle;
end if;

when acq => -- Acquire delay - 64 clocks (8.7us at 7.3728MHz)
delay <= delay + 1;
if delay = 63 then state <= start;
else state <= acq;
end if;

when start => -- ADC read - start conversion
state <= check;

when check => -- ADC read - wait for busy to fall.
if (busy = ’0’) then state <= check;
else state <= high;
end if;

when high => -- ADC read - latch high byte
result (15 downto 8) <= adcdata;
state <= low;

when low => -- ADC read - latch low byte
result (7 downto 0) <= adcdata;
state <= finished;

when finished => -- All done - waiting for stb to fall;

74 APPENDIX A: AT Dataset Engine VHDL Source

if stb = ’1’ then state <= finished;
else state <= idle;
end if;

when others =>
state <= idle;

end case;
end if;

end process;

end archadc;

A.4 F83 Bus Controller Source

-- MNRF Interface VHDL Code

-- Dataset 8 bit buss adapter

-- Revision: 1.0
-- Commenced: 27/2/2001.
-- Last Modified: 27/2/2001
-- Author: Suzy Jackson sjackson@atnf.csiro.au

-- This package contains a simple sequencer to drive an 8 bit buss from
-- the 16 bit buss provided by the dataset block.

-- Inputs:

-- rst: active high reset.
-- clk: 3.6864MHz clock (nominally)
-- stb16: active high data strobe from dataset block
-- wr: active high read*/write line from dataset block
-- en: active high enable line.

-- Bidirectional:

-- Data_16 (15 downto 0): 16 bit data buss from dataset
-- Data_8 (7 downto 0): 8 bit data buss

-- Outputs:

-- stb8: data strobe
-- hbe: a line indicating whether the high byte (1) or low byte (0)
-- is being used.

-- Monitor Read:
--
-- Wr: XXXX___________________________XXXX
-- ________________
-- Stb16: _________| |________
-- ___________

APPENDIX A: AT Dataset Engine VHDL Source 75

-- Data16: XXXX------<XXXXX___________>---XXXX
-- ___
-- Hbe: __________| |____________________
-- _ _
-- Stb8: ___________| |_| |_________________
-- __ __
-- Data8: XXXX-------<__><__>------------XXXX

-- Control Write:
-- ___________________________
-- Wr: XXXX XXXX
-- ________
-- Stb16: _________| |________________
-- ______________
-- Data16: XXXXXXXXX______________XXXXXXXXXXXX
-- ___
-- Hbe: ___________________| |___________
-- _ _
-- Stb8: ____________________| |_| |________
-- ___ ___
-- Data8: XXXXXXXXXXXXXXXXXXXX___X___XXXXXXXX

--***
-- buss8 Entity/Architecture Definition
--***

library ieee;
use ieee.std_logic_1164.all;

entity buss8 is port (
rst, clk, stb16, wr, en: in std_logic;
data16: inout std_logic_vector(15 downto 0);
data8: inout std_logic_vector (7 downto 0);
stb8, hbe: out std_logic);

end buss8;

architecture archbus of buss8 is

type state_type is (idle, rd_a, rd_b, rd_c, rd_d, rd_e, rd_f,
wr_a, wr_b, wr_c, wr_d, wr_e, wr_f, wr_g);

signal state: state_type;
signal data: std_logic_vector (15 downto 0);

begin

data16 <= data when (wr = ’0’) and (stb16 = ’1’) and (en = ’1’) else
"ZZZZZZZZZZZZZZZZ";

hbe <= ’1’ when state = rd_a else

76 APPENDIX A: AT Dataset Engine VHDL Source

’1’ when state = rd_b else
’1’ when state = rd_c else
’1’ when state = wr_b else
’1’ when state = wr_c else
’1’ when state = wr_d else
’0’;

stb8 <= ’1’ when state = rd_b else
’1’ when state = rd_e else
’1’ when state = wr_c else
’1’ when state = wr_f else
’0’;

data8 <= data (15 downto 8) when state = wr_b else
data (15 downto 8) when state = wr_c else
data (15 downto 8) when state = wr_d else
data (7 downto 0) when state = wr_e else
data (7 downto 0) when state = wr_f else
data (7 downto 0) when state = wr_g else
"ZZZZZZZZ";

process (clk, rst)
begin
if rst = ’1’ then

-- asynchronous reset condition
state <= idle;

elsif clk’event and clk = ’1’ then

case state is

when idle => -- Waiting for something to happen
if (wr = ’0’) and (stb16 = ’1’) and (en = ’1’) then state <= rd_a;
elsif (wr = ’1’) and (stb16 = ’1’) and (en = ’1’) then state <= wr_a;
else state <= idle;
end if;

when rd_a =>
state <= rd_b;

when rd_b =>
data (15 downto 8) <= data8;
state <= rd_c;

when rd_c =>
state <= rd_d;

when rd_d =>
state <= rd_e;

when rd_e =>
data (7 downto 0) <= data8;
state <= rd_f;

when rd_f =>
if stb16 = ’0’ then state <= idle;
else state <= rd_f;
end if;

APPENDIX A: AT Dataset Engine VHDL Source 77

when wr_a => -- Wait for stb16 to fall again
if stb16 = ’0’ then state <= wr_b;
else

data <= data16;
state <= wr_a;

end if;
when wr_b =>

state <= wr_c;
when wr_c =>

state <= wr_d;
when wr_d =>

state <= wr_e;
when wr_e =>

state <= wr_f;
when wr_f =>

state <= wr_g;
when wr_g =>

state <= idle;
when others =>

state <= idle;

end case;

end if;
end process;

end archbus;

A.5 WVR ADC Sequencer Source

-- MNRF Interface VHDL Code

-- WVR ADC Read Tool

-- Revision: 1.0
-- Commenced: 10/8/01.
-- Last Modified: 10/8/01
-- Author: Suzy Jackson sjackson@atnf.csiro.au

-- This package contains the hardware necessary to drive the ADS1252
-- ADC as found on the WVR interface board.

-- Inputs:

-- rst: Active high reset signal.
-- clk: 3.6864MHz system clock.
-- add: Dataset address lines (3 bits).
-- stb: Address strobe. Connect straight to the relevant dataset
-- module line.
-- This line in conjunction with the ane line enables the
-- data tri-states.

78 APPENDIX A: AT Dataset Engine VHDL Source

-- ane: Address enable. Connect to the address decoder.
-- adcdata: Serial data input from ADC.

-- Outputs:

-- data: 24 bit Tri states containing result of the addressed ADC
-- conversion
-- adcclk: ADC conversion clock.
-- adcsclk: ADC serial clock.
-- muxadd: Multiplexer address.

-- The ADC is a little tricky to control, both because its speed is
-- excessively slow, and because there is no simple way to start
-- conversions. The ADC simply runs asynchronously, outputting data
-- when it has finished a conversion.

-- These limitations are dealt with in two ways. First, all eight
-- channels are locally buffered. The ADC sequencer simply updates all
-- eight registers every 20msec.

-- In order to do this, the ADC is run at a 1.6KHz conversion rate.
-- This allows eight conversions per channel, satisfying the ADC
-- digital filter settling requirement of six conversions. All but the
-- eighth conversion are discarded.

-- This results in a clk frequency of 614,400 Hz, or 1/6th of the
-- oscillator frequency.

-- The mux is updated after each conversion.

--***
-- wvradc24 Entity/Architecture Definition
--***

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all; -- uncomment this line if synthesising
--use ieee.numeric_std.all; -- uncomment this line if simulating

entity wvradc24 is port (
rst, clk, stb, ane, adcdata: in std_logic;
add: in std_logic_vector (3 downto 0);
data: inout std_logic_vector (23 downto 0);
muxadd: out std_logic_vector (2 downto 0);
mux1en, mux2en, adcclk, adcsclk: out std_logic);

end wvradc24;

architecture archadc of wvradc24 is

type sttype is (idle, dout, getdata, check, transfer);
signal state: sttype;
signal result0: std_logic_vector (23 downto 0);

APPENDIX A: AT Dataset Engine VHDL Source 79

signal result1: std_logic_vector (23 downto 0);
signal result2: std_logic_vector (23 downto 0);
signal result3: std_logic_vector (23 downto 0);
signal result4: std_logic_vector (23 downto 0);
signal result5: std_logic_vector (23 downto 0);
signal result6: std_logic_vector (23 downto 0);
signal result7: std_logic_vector (23 downto 0);
signal result8: std_logic_vector (23 downto 0);
signal result9: std_logic_vector (23 downto 0);
signal result10: std_logic_vector (23 downto 0);
signal result11: std_logic_vector (23 downto 0);
signal result12: std_logic_vector (23 downto 0);
signal result13: std_logic_vector (23 downto 0);
signal result14: std_logic_vector (23 downto 0);
signal result15: std_logic_vector (23 downto 0);
signal serclk: std_logic;
signal temp: std_logic_vector (23 downto 0);
signal waitcnt: unsigned (5 downto 0);
signal bit: unsigned (4 downto 0);
signal channel: unsigned (3 downto 0);
signal clkdiv: unsigned (2 downto 0);
signal sixth: unsigned (3 downto 0);

begin

data <= result0 when (ane = ’1’ and stb = ’1’ and add = "0000") else
result1 when (ane = ’1’ and stb = ’1’ and add = "0001") else
result2 when (ane = ’1’ and stb = ’1’ and add = "0010") else
result3 when (ane = ’1’ and stb = ’1’ and add = "0011") else
result4 when (ane = ’1’ and stb = ’1’ and add = "0100") else
result5 when (ane = ’1’ and stb = ’1’ and add = "0101") else
result6 when (ane = ’1’ and stb = ’1’ and add = "0110") else
result7 when (ane = ’1’ and stb = ’1’ and add = "0111") else
result8 when (ane = ’1’ and stb = ’1’ and add = "1000") else
result9 when (ane = ’1’ and stb = ’1’ and add = "1001") else
result10 when (ane = ’1’ and stb = ’1’ and add = "1010") else
result11 when (ane = ’1’ and stb = ’1’ and add = "1011") else
result12 when (ane = ’1’ and stb = ’1’ and add = "1100") else
result13 when (ane = ’1’ and stb = ’1’ and add = "1101") else
result14 when (ane = ’1’ and stb = ’1’ and add = "1110") else
result15 when (ane = ’1’ and stb = ’1’ and add = "1111") else
"ZZZZZZZZZZZZZZZZZZZZZZZZ";

muxadd <= std_logic_vector (channel (2 downto 0));
mux1en <= not std_logic (channel(3));
mux2en <= std_logic (channel(3));
adcsclk <= serclk;

process (clk, rst) begin
if rst = ’1’ then

adcclk <= ’0’;
clkdiv <= "000";

80 APPENDIX A: AT Dataset Engine VHDL Source

waitcnt <= "000000";
state <= idle;
bit <= "00000";
channel <= "0000";
serclk <= ’0’;
sixth <= "0000";

elsif clk’event and clk = ’1’ then

-- generate adc clock (614400 Hz)
if clkdiv = 2 then

adcclk <= ’1’;
clkdiv <= clkdiv + 1;

elsif clkdiv = 5 then
clkdiv <= "000";
adcclk <= ’0’;

else clkdiv <= clkdiv + 1;
end if;

case state is
when idle => -- wait for data line to go low

waitcnt <= "000000";
if adcdata = ’0’ then state <= dout;
else state <= idle;
end if;

when dout => -- wait 64 clocks.
if adcdata = ’1’ then
if waitcnt = 63 then

state <= getdata;
bit <= "00000";

else
waitcnt <= waitcnt + 1;
state <= dout;

end if;
else state <= dout;
end if;

when getdata => -- data available - clock into temp register.
if bit = 24 then
state <= check;
serclk <= ’0’;

elsif serclk = ’0’ then
temp <= temp (22 downto 0) & not adcdata;
bit <= bit + 1;
state <= getdata;
serclk <= ’1’;

else
serclk <= ’0’;
state <= getdata;

end if;
when check =>

-- we only want the sixth conversion on a given mux address...
sixth <= sixth + 1;

APPENDIX A: AT Dataset Engine VHDL Source 81

if sixth = 15 then state <= transfer;
else state <= idle;
end if;

when transfer => -- transfer temp into relevant result register.
sixth <= "0000";
if (ane = ’0’ or stb = ’0’) then

-- make sure we can’t conflict with a read of the register
if channel = 0 then result0 <= temp;
elsif channel = 1 then result1 <= temp;
elsif channel = 2 then result2 <= temp;
elsif channel = 3 then result3 <= temp;
elsif channel = 4 then result4 <= temp;
elsif channel = 5 then result5 <= temp;
elsif channel = 6 then result6 <= temp;
elsif channel = 7 then result7 <= temp;
elsif channel = 8 then result8 <= temp;
elsif channel = 9 then result9 <= temp;
elsif channel = 10 then result10 <= temp;
elsif channel = 11 then result11 <= temp;
elsif channel = 12 then result12 <= temp;
elsif channel = 13 then result13 <= temp;
elsif channel = 14 then result14 <= temp;
else result15 <= temp;
end if;
channel <= channel + 1;
state <= idle;

else state <= transfer;
end if;

when others =>
state <= idle;

end case;
end if;

end process;

end archadc;

82 APPENDIX A: AT Dataset Engine VHDL Source

Appendix B

F83 Interface Schematics

1 2 3 4

A

B

C

D

4321

D

C

B

A

Revision: Sheet:

1.0 1

Total:

7

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\F83 PCB\Main Board.prj

Project SheetOriginator:

Issued:

ATNF RECEIVER GROUP

F83 Interface Board

Date:

ADC 1.sch

Digital IO 1.sch

Digital IO 2.sch

Connector.sch Xilinx 1.sch

Power Supply.sch

Figure B.1: F83 interface project sheet

83

84 APPENDIX B: F83 Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

2

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
 P

C
B

\A
D

C
 1

.s
c
h

A
D

C
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

V
IN

1

A
G

N
D

1
2

R
E

F
3

C
A

P
4

A
G

N
D

2
5

D
G

N
D

1
4

D
1
5
(M

S
B

)
6

D
1
4

7

D
1
3

8

D
1
2

9

D
1
1

1
0

D
1
0

1
1

D
9

1
2

D
8

1
3

D
7

1
5

D
6

1
6

D
5

1
7

D
4

1
8

D
3

1
9

D
2

2
0

D
1

2
1

D
0

2
2

B
Y

T
E

2
3

R
/C

2
4

C
S

2
5

B
U

S
Y

2
6

V
A

N
A

2
7

V
D

IG
2
8

U
2
1

L
T

C
1
6
0
5
-2

C
G

C
1

4
n
7

C
3
9

1
0
u
F

C
4
2

1
0
u
F

A
n
S

T

V
C

C

A
n
E

N

A
n
B

S
Y

+
5
V

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

H
IG

H

C
4

2
u
2

C
2

2
u
2

R
1

2
0
0
R

 0
.1

%

R
2

3
3
K

2
 0

.1
%

A
N

A
L

O
G

 I
N

D
2

B
Z

V
5
5
C

4
V

3

D
3

B
Z

V
5
5
C

4
V

3

Figure B.2: F83 interface ADC schematic

APPENDIX B: F83 Interface Schematics 85

1
2

3
4

5
6

7
8

ABCD

8
7

6
5

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h

e
e
t:

1
.0

3

T
o
ta

l:

7

D
ra

w
n

:

C
h

e
c
k
e
d

:

A
p

p
ro

ve
d

:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h

e
m

a
ti
c
 F

ile
n

a
m

e
:

K
:\
F

8
3
 P

C
B

\D
ig

it
a
l
IO

 1
.s

c
h

G
e
n

e
ra

l
P

u
rp

o
s
e
 D

ig
it

a
l
I/
O

O
ri
g

in
a
to

r:

Is
s
u

e
d

:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
1

7
4
A

C
T

Q
1
6
2
4
5

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
2

7
4
A

C
T

Q
1
6
2
4
5

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
3

7
4
A

C
T

Q
1
6
2
4
5

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
4

7
4
A

C
T

Q
1
6
2
4
5

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
5

7
4
A

C
T

Q
1
6
2
4
5

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
6

7
4
A

C
T

Q
1
6
2
4
5

D
ir

1

D
ir

2

D
ir

3

D
ir

4

D
ir

5

D
ir

6

D
ir

7

D
ir

8

D
ir

9

D
ir

1
0

D
ir

1
1

D
ir

1
2

C
7

1
0
0
n

V
C

C

C
8

1
0
0
n

C
9

1
0
0
n

C
1
0

1
0
0
n

C
1
1

1
0
0
n

C
1
2

1
0
0
n

V
C

C

V
C

C
V

C
C

V
C

C

V
C

C

D
IG

1
/0

D
IG

1
/1

D
IG

1
/2

D
IG

1
/3

D
IG

1
/4

D
IG

1
/5

D
IG

1
/6

D
IG

1
/7

D
IG

2
/0

D
IG

2
/1

D
IG

2
/2

D
IG

2
/3

D
IG

2
/4

D
IG

2
/5

D
IG

2
/6

D
IG

2
/7

D
IG

3
/0

D
IG

3
/1

D
IG

3
/2

D
IG

3
/3

D
IG

3
/4

D
IG

3
/5

D
IG

3
/6

D
IG

3
/7

D
IG

4
/0

D
IG

4
/1

D
IG

4
/2

D
IG

4
/3

D
IG

5
/0

D
IG

5
/1

D
IG

5
/2

D
IG

5
/3

D
IG

5
/4

D
IG

5
/5

D
IG

5
/6

D
IG

5
/7

D
IG

6
/0

D
IG

6
/1

D
IG

6
/2

D
IG

6
/3

D
IG

6
/4

D
IG

6
/5

D
IG

6
/6

D
IG

6
/7

D
IG

7
/0

D
IG

7
/1

D
IG

7
/2

D
IG

7
/3

D
IG

7
/4

D
IG

7
/5

D
IG

7
/6

D
IG

7
/7

D
IG

8
/0

D
IG

8
/1

D
IG

8
/2

D
IG

8
/3

D
IG

9
/0

D
IG

9
/1

D
IG

9
/2

D
IG

9
/3

D
IG

9
/4

D
IG

9
/5

D
IG

9
/6

D
IG

9
/7

D
IG

1
0
/0

D
IG

1
0
/1

D
IG

1
0
/2

D
IG

1
0
/3

D
IG

1
0
/4

D
IG

1
0
/5

D
IG

1
0
/6

D
IG

1
0
/7

D
IG

1
1
/0

D
IG

1
1
/1

D
IG

1
1
/2

D
IG

1
1
/3

D
IG

1
1
/4

D
IG

1
1
/5

D
IG

1
1
/6

D
IG

1
1
/7

D
IG

1
2
/0

D
IG

1
2
/1

D
IG

1
2
/2

D
IG

1
2
/3

D
IG

1
2
/4

D
IG

1
2
/5

D
IG

1
2
/6

D
IG

1
2
/7

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
7

7
4
A

C
T

Q
1
6
2
4
5

C
1
3

1
0
0
n

V
C

C
D

ir
1
3

D
ir

1
4

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
8

7
4
A

C
T

Q
1
6
2
4
5

C
1
4

1
0
0
n

V
C

C
D

ir
1
5

D
IG

1
3
/0

D
IG

1
3
/1

D
IG

1
3
/2

D
IG

1
3
/3

D
IG

1
3
/4

D
IG

1
3
/5

D
IG

1
4
/0

D
IG

1
4
/1

D
IG

1
4
/2

D
IG

1
4
/3

D
IG

1
4
/4

D
IG

1
4
/5

D
IG

1
5
/0

D
IG

1
5
/1

D
IG

1
5
/2

D
IG

1
5
/3

D
IG

1
5
/4

D
IG

1
5
/5

D
IG

1
5
/6

D
IG

1
5
/7

B
D

IG
1
/0

B
D

IG
1
/1

B
D

IG
1
/2

B
D

IG
1
/3

B
D

IG
1
/4

B
D

IG
1
/5

B
D

IG
1
/6

B
D

IG
1
/7

B
D

IG
2
/0

B
D

IG
2
/1

B
D

IG
2
/2

B
D

IG
2
/3

B
D

IG
2
/4

B
D

IG
2
/5

B
D

IG
2
/6

B
D

IG
2
/7

B
D

IG
3
/0

B
D

IG
3
/1

B
D

IG
3
/2

B
D

IG
3
/3

B
D

IG
3
/4

B
D

IG
3
/5

B
D

IG
3
/6

B
D

IG
3
/7

B
D

IG
4
/0

B
D

IG
4
/1

B
D

IG
4
/2

B
D

IG
4
/3

B
D

IG
5
/0

B
D

IG
5
/1

B
D

IG
5
/2

B
D

IG
5
/3

B
D

IG
5
/4

B
D

IG
5
/5

B
D

IG
5
/6

B
D

IG
5
/7

B
D

IG
6
/0

B
D

IG
6
/1

B
D

IG
6
/2

B
D

IG
6
/3

B
D

IG
6
/4

B
D

IG
6
/5

B
D

IG
6
/6

B
D

IG
6
/7

B
D

IG
7
/0

B
D

IG
7
/1

B
D

IG
7
/2

B
D

IG
7
/3

B
D

IG
7
/4

B
D

IG
7
/5

B
D

IG
7
/6

B
D

IG
7
/7

B
D

IG
8
/0

B
D

IG
8
/1

B
D

IG
8
/2

B
D

IG
8
/3

B
D

IG
9
/0

B
D

IG
9
/1

B
D

IG
9
/2

B
D

IG
9
/3

B
D

IG
9
/4

B
D

IG
9
/5

B
D

IG
9
/6

B
D

IG
9
/7

B
D

IG
1
0
/0

B
D

IG
1
0
/1

B
D

IG
1
0
/2

B
D

IG
1
0
/3

B
D

IG
1
0
/4

B
D

IG
1
0
/5

B
D

IG
1
0
/6

B
D

IG
1
0
/7

B
D

IG
1
1
/0

B
D

IG
1
1
/1

B
D

IG
1
1
/2

B
D

IG
1
1
/3

B
D

IG
1
1
/4

B
D

IG
1
1
/5

B
D

IG
1
1
/6

B
D

IG
1
1
/7

B
D

IG
1
2
/0

B
D

IG
1
2
/1

B
D

IG
1
2
/2

B
D

IG
1
2
/3

B
D

IG
1
2
/4

B
D

IG
1
2
/5

B
D

IG
1
2
/6

B
D

IG
1
2
/7

B
D

IG
1
3
/0

B
D

IG
1
3
/1

B
D

IG
1
3
/2

B
D

IG
1
3
/3

B
D

IG
1
3
/4

B
D

IG
1
3
/5

B
D

IG
1
4
/0

B
D

IG
1
4
/1

B
D

IG
1
4
/2

B
D

IG
1
4
/3

B
D

IG
1
4
/4

B
D

IG
1
4
/5

B
D

IG
1
5
/0

B
D

IG
1
5
/1

B
D

IG
1
5
/2

B
D

IG
1
5
/3

B
D

IG
1
5
/4

B
D

IG
1
5
/5

B
D

IG
1
5
/6

B
D

IG
1
5
/7

Figure B.3: F83 interface digital I/O 1 schematic

86 APPENDIX B: F83 Interface Schematics

1
2

3
4

5
6

7
8

ABCD

8
7

6
5

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h

e
e
t:

1
.0

4

T
o
ta

l:

7

D
ra

w
n

:

C
h

e
c
k
e
d

:

A
p

p
ro

ve
d

:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h

e
m

a
ti
c
 F

ile
n

a
m

e
:

K
:\
F

8
3
 P

C
B

\D
ig

it
a
l
IO

 2
.s

c
h

D
if

fe
re

n
ti

a
l
&

 F
ib

re
 I
/O

O
ri
g

in
a
to

r:

Is
s
u

e
d

:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
9

M
A

X
4
8
7

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
1
0

M
A

X
4
8
7

V
C

C

V
C

C

B
D

if
1

B
D

if
2

D
if

D
ir

1

D
if

D
ir

2

C
1
5

1
0
0
n

C
1
6

1
0
0
n

D
IF

A
+

D
IF

A
-

D
IF

B
+

D
IF

B
-

L
5

E
V

E
N

T

L
4

L
O

C
A

L

L
3

R
E

M
O

T
E

L
2

A
D

D
R

E
S

S
E

D

L
1

T
X

D

R
9

3
9
0
R

R
1
0

3
9
0
R

R
1
1

3
9
0
R

R
1
2

3
9
0
R

R
1
3

3
9
0
R

A
0

4
7

A
1

4
6

A
2

4
4

A
3

4
3

A
4

4
1

A
5

4
0

A
6

3
8

A
7

3
7

A
8

3
6

A
9

3
5

A
1

0
3

3

A
1

1
3

2

A
1

2
3

0

A
1

3
2

9

A
1

4
2

7

A
1

5
2

6

O
E

1
4

8

O
E

2
2

5

T
/R

1
1

T
/R

2
2

4

B
0

2

B
1

3

B
2

5

B
3

6

B
4

8

B
5

9

B
6

1
1

B
7

1
2

B
8

1
3

B
1

5
2

3

B
9

1
4

B
1

4
2

2

B
1

0
1

6

B
1

3
2

0

B
1

1
1

7

B
1

2
1

9

U
1
4

7
4
A

C
T

Q
1
6
2
4
5

L
6

M
IS

C

R
1
4

3
9
0
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

2
4

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

2
5

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

2
6

N
F

A
6
2
R

1 3 2 4

U
1
9

H
F

D
3
0
2
3

1 23 4

U
2
0

H
F

E
4
0
7
4

R
1
5

1
8
0
R

R
1
6

1
8
0
R

V
C

C

F
R

X

F
T

X

L
E

D
1

L
E

D
2

L
E

D
3

L
E

D
4

L
E

D
5

L
E

D
6

L
E

D
7

L
E

D
8

L
E

D
9

L
E

D
1
0

L
E

D
1
1

L
E

D
1
2

V
C

C

C
1
7

1
0
0
n

C
1
8

1
0
0
n

V
C

C

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D
2

4

5 3

U
1
7

N
C

7
S

0
4

R
3

1
0
K

S
W

1

S
W

-P
B

P
R

O
G

R
4

1
K

R
5

1
K

V
C

C

Figure B.4: F83 interface digital I/O 2 schematic

APPENDIX B: F83 Interface Schematics 87

1
2

3
4

5
6

7
8

ABCD

8
7

6
5

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h

e
e
t:

5

T
o
ta

l:

7

D
ra

w
n

:

C
h

e
c
k
e
d

:

A
p

p
ro

ve
d

:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h

e
m

a
ti
c
 F

ile
n

a
m

e
:

K
:\
F

8
3
 P

C
B

\C
o
n
n
e
c
to

r.
s
c
h

D
IN

 C
o

n
n

e
c
to

r
a
n

d
 E

M
I
F

il
te

rs
O

ri
g

in
a
to

r:

Is
s
u

e
d

:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

1
a

2
a

3
a

4
a

5
a

6
a

7
a

8
a

9
a

1
0

a

1
1

a

1
2

a

1
3

a

1
4

a

1
5

a

1
6

a

1
7

a

1
8

a

1
9

a

2
0

a

2
1

a

2
2

a

2
3

a

2
4

a

2
5

a

2
6

a

2
7

a

2
8

a

2
9

a

3
0

a

3
1

a

3
2

a

J
1
A

D
IN

1
2
8

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b

1
0

b

1
1

b

1
2

b

1
3

b

1
4

b

1
5

b

1
6

b

1
7

b

1
8

b

1
9

b

2
0

b

2
1

b

2
2

b

2
3

b

2
4

b

2
5

b

2
6

b

2
7

b

2
8

b

2
9

b

3
0

b

3
1

b

3
2

b

J
1
B

D
IN

1
2
8

1
c

2
c

3
c

4
c

5
c

6
c

7
c

8
c

9
c

1
0

c

1
1

c

1
2

c

1
3

c

1
4

c

1
5

c

1
6

c

1
7

c

1
8

c

1
9

c

2
0

c

2
1

c

2
2

c

2
3

c

2
4

c

2
5

c

2
6

c

2
7

c

2
8

c

2
9

c

3
0

c

3
1

c

3
2

c

J
1
C

D
IN

1
2
8

1
d

2
d

3
d

4
d

5
d

6
d

7
d

8
d

9
d

1
0

d

1
1

d

1
2

d

1
3

d

1
4

d

1
5

d

1
6

d

1
7

d

1
8

d

1
9

d

2
0

d

2
1

d

2
2

d

2
3

d

2
4

d

2
5

d

2
6

d

2
7

d

2
8

d

2
9

d

3
0

d

3
1

d

3
2

d

J
1
D

D
IN

1
2
8

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

1

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

3

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

5

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

7

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

9

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

1
1

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

1
3

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

1
5

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

1
7

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

1
9

N
F

A
6
2
R

1 2 3 4 5 6
7891

0

1
1

1
2

L
F

2
1

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

2

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

4

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

6

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

8

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

1
0

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

1
2

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

1
4

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

1
6

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

1
8

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

2
0

N
F

A
6
2
R

1 2 3 4 5 6
789

1
0

1
1

1
2

L
F

2
2

N
F

A
6
2
R

J
1
A

1

J
1
A

2

J
1
A

3

J
1
A

4

J
1
A

5

J
1
A

6

J
1
A

7

J
1
A

8

J
1
A

9

J
1
A

1
0

J
1
A

1
1

J
1
A

1
2

J
1
A

1
3

J
1
A

1
4

J
1
A

1
5

J
1
A

1
6

J
1
A

1
7

J
1
A

1
8

J
1
A

1
9

J
1
A

2
0

J
1
A

2
1

J
1
A

2
2

J
1
A

2
3

J
1
A

2
4

J
1
A

2
5

J
1
A

2
6

J
1
A

2
7

J
1
B

2
8

J
1
A

2
9

J
1
A

3
0

J
1
A

3
1

J
1
A

3
2

J
1
B

1

J
1
B

2

J
1
B

3

J
1
B

4

J
1
B

5

J
1
B

6

J
1
B

7

J
1
B

8

J
1
B

9

J
1
B

1
0

J
1
B

1
1

J
1
B

1
2

J
1
B

1
3

J
1
B

1
4

J
1
B

1
5

J
1
B

1
6

J
1
B

1
7

J
1
B

1
8

J
1
B

1
9

J
1
B

2
0

J
1
B

2
1

J
1
B

2
2

J
1
B

2
3

J
1
B

2
4

J
1
B

2
5

J
1
B

2
6

J
1
B

2
7

J
1
B

2
8

J
1
B

2
9

J
1
B

3
0

J
1
B

3
1

J
1
B

3
2

J
1
C

1

J
1
C

2

J
1
C

3

J
1
C

4

J
1
C

5

J
1
C

6

J
1
C

7

J
1
C

8

J
1
C

9

J
1
C

1
0

J
1
C

1
1

J
1
C

1
2

J
1
C

1
3

J
1
C

1
4

J
1
C

1
5

J
1
C

1
6

J
1
C

1
7

J
1
C

1
8

J
1
C

1
9

J
1
C

2
0

J
1
C

2
1

J
1
C

2
2

J
1
D

2
3

J
1
C

2
5

J
1
C

2
6

J
1
C

2
7

J
1
D

2
8

J
1
C

2
9

J
1
C

3
0

J
1
C

3
1

J
1
C

3
2

J
1
D

1

J
1
D

2

J
1
D

3

J
1
D

4

J
1
D

5

J
1
D

6

J
1
D

7

J
1
D

8

J
1
D

9

J
1
D

1
0

J
1
D

1
1

J
1
D

1
2

J
1
D

1
3

J
1
D

1
4

J
1
D

1
5

J
1
D

1
6

J
1
D

1
7

J
1
D

1
8

J
1
D

1
9

J
1
D

2
0

J
1
D

2
1

J
1
D

2
2

J
1
D

2
3

J
1
D

2
5

J
1
D

2
6

J
1
D

2
7

J
1
D

2
8

J
1
D

2
9

J
1
D

3
0

J
1
D

3
1

J
1
D

3
2

J
1
A

1

J
1
A

2

J
1
A

3

J
1
A

4

J
1
A

5

J
1
A

6

J
1
A

7

J
1
A

8

J
1
A

9

J
1
A

1
0

J
1
A

1
1

J
1
A

1
2

J
1
A

1
3

J
1
A

1
4

J
1
A

1
5

J
1
A

1
6

J
1
A

1
7

J
1
A

1
8

J
1
A

1
9

J
1
A

2
0

J
1
A

2
1

J
1
A

2
2

J
1
A

2
3

J
1
A

2
4

J
1
A

2
5

J
1
A

2
6

J
1
A

2
7

J
1
A

2
9

J
1
A

3
0

J
1
A

3
1

J
1
A

3
2

J
1
B

1

J
1
B

2

J
1
B

3

J
1
B

4

J
1
B

5

J
1
B

6

J
1
B

7

J
1
B

8

J
1
B

9

J
1
B

1
0

J
1
B

1
1

J
1
B

1
2

J
1
B

1
3

J
1
B

1
4

J
1
B

1
5

J
1
B

1
6

J
1
B

1
7

J
1
B

1
8

J
1
B

1
9

J
1
B

2
0

J
1
B

2
1

J
1
B

2
2

J
1
B

2
3

J
1
B

2
4

J
1
B

2
5

J
1
B

2
6

J
1
B

2
7

J
1
B

2
8

J
1
B

2
9

J
1
B

3
0

J
1
B

3
1

J
1
B

3
2

J
1
C

1

J
1
C

2

J
1
C

3

J
1
C

4

J
1
C

5

J
1
C

6

J
1
C

7

J
1
C

8

J
1
C

9

J
1
C

1
0

J
1
C

1
1

J
1
C

1
2

J
1
C

1
3

J
1
C

1
4

J
1
C

1
5

J
1
C

1
6

J
1
C

1
7

J
1
C

1
8

J
1
C

1
9

J
1
C

2
0

J
1
C

2
1

J
1
C

2
2

J
1
C

2
5

J
1
C

2
6

J
1
C

2
7

J
1
C

2
9

J
1
C

3
0

J
1
C

3
1

J
1
C

3
2

J
1
D

1

J
1
D

2

J
1
D

3

J
1
D

4

J
1
D

5

J
1
D

6

J
1
D

7

J
1
D

8

J
1
D

9

J
1
D

1
0

J
1
D

1
1

J
1
D

1
2

J
1
D

1
3

J
1
D

1
4

J
1
D

1
5

J
1
D

1
6

J
1
D

1
7

J
1
D

1
8

J
1
D

1
9

J
1
D

2
0

J
1
D

2
1

J
1
D

2
2

J
1
D

2
3

J
1
D

2
5

J
1
D

2
6

J
1
D

2
7

J
1
D

2
8

J
1
D

2
9

J
1
D

3
0

J
1
D

3
1

J
1
D

3
2

A
N

A
L

O
G

 I
N

A
N

G
N

D

A
N

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

V
C

C

V
C

C

D
IG

1
/0

D
IG

1
/1

D
IG

1
/2

D
IG

1
/3

D
IG

1
/4

D
IG

1
/5

D
IG

1
/6

D
IG

1
/7

D
IG

2
/0

D
IG

2
/1

D
IG

2
/2

D
IG

2
/3

D
IG

2
/4

D
IG

2
/5

D
IG

2
/6

D
IG

2
/7

D
IG

3
/0

D
IG

3
/1

D
IG

3
/2

D
IG

3
/3

D
IG

3
/4

D
IG

3
/5

D
IG

3
/6

D
IG

3
/7

D
IG

4
/0

D
IG

4
/1

D
IG

4
/2

D
IG

4
/3

D
IG

5
/0

D
IG

5
/1

D
IG

5
/2

D
IG

5
/3

D
IG

5
/4

D
IG

5
/5

D
IG

5
/6

D
IG

5
/7

D
IG

6
/0

D
IG

6
/1

D
IG

6
/2

D
IG

6
/3

D
IG

6
/4

D
IG

6
/5

D
IG

6
/6

D
IG

6
/7

D
IG

7
/0

D
IG

7
/1

D
IG

7
/2

D
IG

7
/3

D
IG

7
/4

D
IG

7
/5

D
IG

7
/6

D
IG

7
/7

D
IG

8
/0

D
IG

8
/1

D
IG

8
/2

D
IG

8
/3

D
IF

A
+

D
IF

A
-

D
IF

B
+

D
IF

B
-

D
IG

9
/0

D
IG

9
/1

D
IG

9
/2

D
IG

9
/3

D
IG

9
/4

D
IG

9
/5

D
IG

9
/6

D
IG

9
/7

D
IG

1
0
/0

D
IG

1
0
/1

D
IG

1
0
/2

D
IG

1
0
/3

D
IG

1
0
/4

D
IG

1
0
/5

D
IG

1
0
/6

D
IG

1
0
/7

D
IG

1
1
/0

D
IG

1
1
/1

D
IG

1
1
/2

D
IG

1
1
/3

D
IG

1
1
/4

D
IG

1
1
/5

D
IG

1
1
/6

D
IG

1
1
/7

D
IG

1
2
/0

D
IG

1
2
/1

D
IG

1
2
/2

D
IG

1
2
/3

D
IG

1
2
/4

D
IG

1
2
/5

D
IG

1
2
/6

D
IG

1
2
/7

D
IG

1
3
/0

D
IG

1
3
/1

D
IG

1
3
/2

D
IG

1
3
/3

D
IG

1
3
/4

D
IG

1
3
/5

D
IG

1
4
/0

D
IG

1
4
/1

D
IG

1
4
/2

D
IG

1
4
/3

D
IG

1
4
/4

D
IG

1
4
/5

D
IG

1
5
/0

D
IG

1
5
/1

D
IG

1
5
/2

D
IG

1
5
/3

D
IG

1
5
/4

D
IG

1
5
/5

D
IG

1
5
/6

D
IG

1
5
/7

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

Figure B.5: F83 interface RFI filtering schematic

88 APPENDIX B: F83 Interface Schematics

1 2 3 4

A

B

C

D

E

F

G

H

4321

H

G

F

E

D

C

B

A

Revision: Sheet:

1.0 6

Total:

7

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\F83 PCB\Xilinx 1.sch

Xilinx Chip and supportOriginator:

Issued:

ATNF RECEIVER GROUP

F83 Interface Board

Date:

G
N

D
1

GCLK1-I/O
2

I/O
3

I/O
4

I/O
5

TDI-I/O
6

TCK-I/O
7

I/O
8

I/O
9

I/O
10

I/O
11

I/O
12

I/O
13

G
N

D
1

4

I/O
15

I/O
16

TMS-I/0
17

I/O
18

V
C

C
1

9

I/O
20

I/O
21

I/O
23

I/O
24

I/O
25

I/O
26

I/O
27

I/O
28

G
N

D
2

9

V
C

C
3

0

I/O
31

I/O
32

I/O
33

I/O
34

I/O
35

I/O
36

I/O
38

I/O
39

V
C

C
4

0

I/O
41

I/O
42

I/O
43

I/O
44

G
N

D
4

5

I/O
46

I/O
47

I/O
48

I/O
49

I/O
50

I/O
51

I/O
52

I/O
53

I/O
54

I/O
55

I/O
56

GCLK2-I/O
57

M1
58

G
N

D
5

9

M0
60

V
C

C
6

1

PWRDWN
62

GCLK3-I/O
63

HDC-I/O
64

I/O
65

I/O
66

I/O
67

LDC-I/O
68

I/O
69

I/O
70

I/O
71

I/O
72

I/O
73

I/O
74

G
N

D
7

5

I/O
76

I/O
77

I/O
78

I/O
79

V
C

C
8

0

INIT-I/O
89

I/O
81

I/O
82

I/O
84

I/O
85

I/O
86

I/O
87

I/O
88

V
C

C
9

0

G
N

D
9

1

I/O
92

I/O
93

I/O
94

I/O
95

I/O
96

I/O
97

I/O
99

I/O
100

V
C

C
1

0
1

I/O
102

I/O
103

I/O
104

I/O
105

G
N

D
1

0
6

I/O
107

I/O
108

I/O
109

I/O
110

I/O
111

I/O
112

I/O
113

I/O
114

I/O
115

I/O
116

I/O
117

GCLK4-I/O
118

G
N

D
1

1
9

DONE
120

V
C

C
1

2
1

PROG
122

I/O
123

GCLK5-I/O
124

I/O
125

I/O
126

I/O
127

I/O
128

I/O
129

I/O
130

I/O
131

I/O
132

I/O
133

I/O
134

G
N

D
1

3
5

I/O
136

I/O
137

I/O
138

I/O
139

V
C

C
1

4
0

I/O
141

I/O
142

I/O
144

I/O
145

I/O
146

I/O
147

I/O
148

I/O
149

V
C

C
1

5
0

G
N

D
1

5
1

I/O
152

I/O
153

I/O
154

I/O
155

I/O
156

I/O
157

I/O
159

I/O
160

V
C

C
1

6
1

I/O
162

I/O
163

I/O
164

I/O
165

G
N

D
1

6
6

I/O
167

I/O
168

I/O
169

I/O
170

I/O
171

I/O
172

I/O
173

I/O
174

I/O
175

I/O
176

DIN-I/O
177

DOUT-GCLK6-I/O
178

CCLK
179

V
C

C
1

8
0

TDO-O
181

G
N

D
1

8
2

I/O
183

GCLK7-I/O
184

I/O
185

I/O
186

I/O
187

I/O
188

I/O
189

I/O
190

I/O
191

I/O
192

I/O
193

I/O
194

G
N

D
1

9
6

I/O
197

I/O
198

I/O
199

I/O
200

V
C

C
2

0
1

I/O
202

I/O
203

I/O
205

I/O
206

I/O
207

I/O
208

I/O
209

I/O
210

G
N

D
2

1
1

V
C

C
2

1
2

I/O
213

I/O
214

I/O
215

I/O
216

I/O
217

I/O
218

I/O
220

I/O
221

V
C

C
2

2
2

I/O
223

I/O
224

I/O
225

I/O
226

G
N

D
2

2
7

I/O
228

I/O
229

I/O
230

I/O
231

I/O
232

I/O
233

I/O
234

I/O
235

I/O
236

I/O
237

I/O
238

GCLK8-I/O
239

V
C

C
2

4
0

G
N

D
2

2

G
N

D
3

7

G
N

D
8

3

G
N

D
9

8

G
N

D
1

4
3

G
N

D
1

5
8

G
N

D
2

0
4

G
N

D
2

1
9

U12

XC5210PQ240

Dir1

Dir2

Dir3

Dir4

Dir5

Dir6

Dir7

Dir8

Dir9

Dir10

Dir11

Dir12

BDif1

BDif2

DifDir1

DifDir2

C19

100n

C20

100n

C21

100n

C22

100n

C23

100n

C25

100n

C26

100n

C27

100n

C28

100n

C29

100n

+3V3

VCC

V
C

C
8

G
N

D
4

OUT
5

U16

3.6864MHz OSCILLATOR

PROG

R17

4K7

+3V3

AnST

AnBSY

AnEN

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

D0

D1

D2

D3

D4

D5

D6

D7

PROG

ROMEN

R7

4K7

INIT

VCC

CCLK

DONE

3.6864MHz

3.6864MHz

A16

A16

Dir13

Dir14

ROMRD

ROMWR

LF23

NFM40R

VCC

C30

100n

1

TP4

VCC

1

TP5

GND

VCC

+3V3

NC
1

A16
2

A15
3

A12
4

A7
5

A6
6

A5
7

A4
8

A3
9

A2
10

A1
11

A0
12

DQ0
13

DQ1
14

DQ2
15

DQ3
17

DQ4
18

DQ5
19

DQ6
20

DQ7
21

CE
22

A10
23

OE
24

A11
25

A9
26

A8
27

A13
28

A14
29

NC
30

WE
31

U13

AM29F010-120JC(32)

G
N

D
1

0
V

C
C

2
0

4

D
2

CE
8

RST
6

RDY
15

SEREN
17

CEO
18

WP1
5

WP2
7

U15
AT17LV010

DIN

INIT

DONE

DIN

CCLK

+3V3

ROMEN

D5

1N4148

PROG

12

34

56

78

910

JP1

HEADER 5X2

DIN

CCLK

R18

4K7

R19

4K7

+3V3

+3V3

VCC

ROMRD

ROMWR

BDIG1/0

BDIG1/1

BDIG1/2

BDIG1/3

BDIG1/4

BDIG1/5

BDIG1/6

BDIG1/7

BDIG2/0

BDIG2/1

BDIG2/2

BDIG2/3

BDIG2/4

BDIG2/5

BDIG2/6

BDIG2/7

BDIG3/0

BDIG3/1

BDIG3/2

BDIG3/3

BDIG3/4

BDIG3/5

BDIG3/6

BDIG3/7

BDIG4/0

BDIG4/1

BDIG4/2

BDIG4/3

BDIG5/0

BDIG5/1

BDIG5/2

BDIG5/3

BDIG5/4

BDIG5/5

BDIG5/6

BDIG5/7

BDIG6/0

BDIG6/1

BDIG6/2

BDIG6/3

BDIG6/4

BDIG6/5

BDIG6/6

BDIG6/7

BDIG7/0

BDIG7/1

BDIG7/2

BDIG7/3

BDIG7/4

BDIG7/5

BDIG7/6

BDIG7/7

BDIG8/0

BDIG8/1

BDIG8/2

BDIG8/3

BDIG9/0

BDIG9/1

BDIG9/2

BDIG9/3

BDIG9/4

BDIG9/5

BDIG9/6

BDIG9/7

BDIG10/0

BDIG10/1

BDIG10/2

BDIG10/3

BDIG10/4

BDIG10/5

BDIG10/6

BDIG10/7

BDIG11/0

BDIG11/1

BDIG11/2

BDIG11/3

BDIG11/4

BDIG11/5

BDIG11/6

BDIG11/7

BDIG12/0

BDIG12/1

BDIG12/2

BDIG12/3

BDIG12/4

BDIG12/5

BDIG12/6

BDIG12/7

BDIG13/0

BDIG13/1

BDIG13/2

BDIG13/3

BDIG13/4

BDIG13/5

BDIG14/0

BDIG14/1

BDIG14/2

BDIG14/3

BDIG14/4

BDIG14/5

BDIG15/0

BDIG15/1

BDIG15/2

BDIG15/3

BDIG15/4

BDIG15/5

BDIG15/6

BDIG15/7

Dir15

HIGH

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

LED9

LED10

LED11

LED12

FTX

FRX

GND

GND

GND

GND

GND

GND

GND

LF28

NFM40R

Figure B.6: F83 interface Xilinx support schematic

APPENDIX B: F83 Interface Schematics 89

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

7

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
 P

C
B

\P
o
w

e
r

S
u
p
p
ly

.s
c
h

3
V

3
 P

o
w

e
r

S
u

p
p

ly
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

C
3
2

1
0
u
 1

0
V

V
IN

3

S
C

4

V
O

U
T

5

S
P

G
8

L
B

F
1

GND
7

U
1
1

Z
L

D
0
3
3
0

C
3
4

4
7
u
 1

6
V

C
3
5

2
u
2
 1

0
V

C
3
6

1
0
p

C
3
1

1
0
0
n

D
1

T
M

M
B

A
T

-4
8

V
C

C
+

3
V

3

V
S

S

+
5
V

C
3
3

1
0
u
 1

0
V

L
7

1
0
0
u
H

C
3

1
0
0
n

S
H

G
N

D

Figure B.7: F83 interface power supply schematic

90 APPENDIX B: F83 Interface Schematics

1 2 3 4

A

B

C

D

4321

D

C

B

A

Revision: Sheet:

1

Total:

7

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\F83_mm\F83_mm.prj

Project SheetOriginator:

Issued:

ATNF RECEIVER GROUP

F83/F33 Replacement Xilinx

Date:

comms
comms.sch

address
address.sch

addbuss
addbuss.sch

XILINX
PARTTYPE=XCS40XLPQ240-5

U1
GND

U2
VCC

0

1

locprts
locprts.sch

adc
adc.sch

trancver
trancver.sch

Figure B.8: F83 interface Xilinx project sheet

APPENDIX B: F83 Interface Schematics 91

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

2

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
_
m

m
\c

o
m

m
s
.s

c
h

D
a
ta

s
e
t

C
o

m
m

s
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 M

M
 R

e
c
e
iv

e
r

X
il
in

x

D
a
te

:

P
1
5
9

O
P

A
D

E

U
3

O
B

U
F

E

P
1
6
2

O
P

A
D

P
1
8
4

IP
A

D

R
S

T

C
L
K

R
X

D

D
S

A
<

1
>

D
S

A
<

2
>

D
S

A
<

3
>

D
S

A
<

4
>

D
A

T
A

<
0
>

D
A

T
A

<
1
>

D
A

T
A

<
2
>

D
A

T
A

<
3
>

D
A

T
A

<
4
>

D
A

T
A

<
5
>

D
A

T
A

<
6
>

D
A

T
A

<
7
>

D
A

T
A

<
8
>

D
A

T
A

<
9
>

D
A

T
A

<
1
0
>

D
A

T
A

<
1
1
>

D
A

T
A

<
1
2
>

D
A

T
A

<
1
3
>

D
A

T
A

<
1
4
>

D
A

T
A

<
1
5
>

A
D

D
<

0
>

A
D

D
<

1
>

A
D

D
<

2
>

A
D

D
<

3
>

A
D

D
<

4
>

A
D

D
<

5
>

A
D

D
<

6
>

A
D

D
<

7
>

A
D

D
<

8
>

W
R

S
T

B

T
X

D

T
X

D
_
E

N

B
A

U
D

<
0
>

B
A

U
D

<
1
>

B
A

U
D

<
2
>

B
A

U
D

<
3
>

H
B

E

P
A

R

E
R

R

A
D

D
<

9
>

U
1
7

D
A

T
A

S
E

T
2

P
1
7
4

IP
A

D

P
1
6
9

O
P

A
D

U
1
5

IB
U

F

T
X

D

C
L

K

R
X

D

0 0 0 0 1 1 0 1

0

W
R

S
T

B

C
E

C C
L
R

Q
0

Q
1

Q
2

Q
3

C
E

O

T
C

U
1
2

C
B

4
C

E

U
1
6

IN
V

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

U
7

B
U

F
G

3
_
6
8
6
4
M

H
Z

1
5
H

z

B
R

X
D

B
R

X
D

C
E

C C
L
R

Q
0

Q
1

C
E

O

T
C

U
3
8

C
B

2
C

E

U
4
0

IN
V

1
5
H

z

S
T

B

C
E

C C
L
R

Q
0

Q
1

C
E

O

T
C

U
3
9

C
B

2
C

E

U
4
1

IN
V

U
4
2

IN
V

EI0I1I2I3

O
0

O
1

O
2

O
3

U
3
4

O
B

U
F

E
4

1
5
H

z

H
B

E

3
_
6
8
6
4
M

H
Z

P
O

R
S

T

P
O

R
S

T

P
o

w
e
r

o
n

 R
e
s
e
t

C
lo

c
k
 D

iv
id

e
r

F
8
M

F
5
0
0
K

F
1
6
K

F
4
9
0

F
1
5

U
2
5
8

O
S

C
4

O
E

N

O
E

N

D
a
ta

s
e
t

S
ta

te
 M

a
c
h

in
e

S
ta

tu
s
 L

E
D

 D
ri

v
e
rs

5
0
0
K

H
z

P
1
6
0

O
P

A
D

P
1
6
3

O
P

A
D

1 1

P
1
6
4

O
P

A
D

L
E

D
5

L
E

D
6

L
E

D
7

L
E

D
8

L
E

D
9

3
8
4
0
0
 B

P
S

D
S

A
 =

 0
/1

P
A

R

E
R

R

1
5
H

z

P
A

R

C
E

C C
L
R

Q
0

Q
1

C
E

O

T
C

U
6
1

C
B

2
C

E

U
3
5

IN
V

1
5
H

z

E
R

R

C
E

C C
L
R

Q
0

Q
1

C
E

O

T
C

U
6
4

C
B

2
C

E

U
6
0

IN
V

E I0 I1 I2 I3

O
0

O
1

O
2

O
3

U
6
5

O
B

U
F

E
4

1 1

P
1
6
5

O
P

A
D

L
E

D
1
0

P
1
6
7

O
P

A
D

L
E

D
1
1

P
1
6
8

O
P

A
D

L
E

D
1
2

O
E

N

A
9

P
1
7
0

O
P

A
D

P
1
7
3

IP
A

D

D
0

D
1

S
0

O

U
1
9

M
2
_
1

E

U
9

O
B

U
F

E

O
E

N

U
1
8

IB
U

F

P
1
7
2

O
P

A
D

P
1
7
1

O
P

A
D

E

U
1
0

O
B

U
F

E

E

U
1
4

O
B

U
F

E

O
E

N

O
E

N

0 1

D
IF

1

D
IF

2

D
IF

D
IR

1

D
IF

D
IR

2

P
a
ri
ty

B
u
s
y

E
rr

o
r

T
X

D
U

3
3

IN
V

U
2
6
4

IB
U

F

O
E

N
P

8
9

IP
A

D

Figure B.9: F83 interface Xilinx comms schematic

92 APPENDIX B: F83 Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

3

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
_
m

m
\a

d
d
re

s
s
.s

c
h

A
d

d
re

s
s
 D

e
c
o

d
in

g
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 M

M
 R

e
c
e
iv

e
r

X
il
in

x

D
a
te

:

A
0

A
1

A
2

A
3

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

U
1
5
6

D
4
_
1
6
E

A
0

A
1

A
2

A
3

R
e
a
d
5

U
4

A
N

D
2
B

1

W
R

A
0

A
1

A
2

A
3

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

U
2
5
5

D
4
_
1
6
E

A
0

A
1

A
2

A
3

A
d

d
re

s
s
 D

e
c
o

d
e
r

U
2
6
6

IN
V

S
T

B
W

C
K

W
ri

te
2

W
ri

te
3

R
e
a
d
1
0

A
0

A
1

A
2

A
3

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

U
5
4

D
4
_
1
6
E

A
5

A
6

A
7

A
8

W
R

0
-1

5

1
6
-3

1

3
2
-4

7

4
8
-6

3

6
4
-9

5

9
6
-1

1
1

1
1
2
-1

2
7

1
2
8
-1

4
3

A
N

E
N

A
9

U
5

A
N

D
2
B

2

A
4

U
5
3

A
N

D
2

W
R

R
e
a
d
6

A
9

U
3
6

A
N

D
2
B

1

0
-1

5

0
-1

5

R
e
a
d
0

R
e
a
d
1

R
e
a
d
2

R
e
a
d
3

R
e
a
d
4

R
e
a
d
7

R
e
a
d
8

R
e
a
d
9

R
e
a
d
1
1

R
e
a
d
1
2

R
e
a
d
1
3

R
e
a
d
1
4

R
e
a
d
1
5

W
ri

te
0

W
ri

te
1

W
ri

te
4

W
ri

te
5

W
ri

te
6

W
ri

te
7

W
ri

te
8

W
ri

te
9

W
ri

te
1
0

W
ri

te
1
1

W
ri

te
1
2

W
ri

te
1
3

W
ri

te
1
4

W
ri

te
1
5

Figure B.10: F83 interface Xilinx address decode schematic

APPENDIX B: F83 Interface Schematics 93

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

4

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
_
m

m
\a

d
d
b
u
s
s
.s

c
h

A
d

d
re

s
s
 B

u
s
s

O
ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 M

M
 R

e
c
e
iv

e
r

X
il
in

x

D
a
te

:

E

U
1
3

O
B

U
F

E

E I0 I1 I2 I3 I4 I5 I6 I7

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

U
2
7

O
B

U
F

E
8

A
0

A
1

A
2

A
3

A
4

A
5

O
E

N

P
7
2

O
P

A
D

P
1
0
4

O
P

A
D

P
7
0

O
P

A
D

P
1
0
2

O
P

A
D

P
9
9

O
P

A
D

P
6
7

O
P

A
D

D
IG

2
/0

D
IG

9
/1

D
IG

2
/1

D
IG

2
/2

D
IG

9
/2

D
IG

9
/3

A
N

A
L

O
G

 M
U

X
 A

D
D

R
E

S
S

P
7
3

O
P

A
D

P
7
1

O
P

A
D

P
6
9

O
P

A
D

D
IG

2
/4

D
IG

2
/5

D
IG

2
/6

A
6

A
7

A
8

O
E

N

Figure B.11: F83 interface Xilinx address buss schematic

94 APPENDIX B: F83 Interface Schematics

1 2 3 4

A

B

C

D

E

F

G

H

4321

H

G

F

E

D

C

B

A

Revision: Sheet:

5

Total:

7

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\F83_mm\locprts.sch

Local PortsOriginator:

Issued:

ATNF RECEIVER GROUP
Date:

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U44

IBUF8

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U48

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read5

P191

IPAD
P193

IPAD
P198

IPAD

P203

IPAD

P200

IPAD

P194

IPAD

P192

IPAD
P190

IPAD

P226

OPAD

P224

OPAD

P231

OPAD

P229

OPAD

P235

OPAD
P233

OPAD
P221

OPAD

P237

OPAD

E

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U29

OBUFE8

D0

D1

D2

D3

D4

D5

D6

D7

P220

OPAD

P223

OPAD
P225

OPAD
P228

OPAD

P230

OPAD

P232

OPAD

P234

OPAD

P236

OPAD

E

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U30

OBUFE8

D0

D1

D2

D3

D4

D5

D6

D7

CE

C

CLR

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

U50

FD8CE

D0

D1

D2

D3

D4

D5

D6

D7

CE

C

CLR

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

U51

FD8CE

D0

D1

D2

D3

D4

D5

D6

D7

OEN

OEN

Write2

Write3

WCK

WCK

0

0

MON5-0

MON5-1

MON5-2

MON5-3

MON5-4

MON5-5

MON5-6

MON5-7

CMD2-0

CMD2-1

CMD2-2

CMD2-3

CMD2-4

CMD2-5

CMD2-6

CMD2-7

CMD3-0

CMD3-1

CMD3-2

CMD3-3

CMD3-4

CMD3-5

CMD3-6

CMD3-7

MON 5 INPUTS

CMD 2 OUTPUTS

CMD 3 OUTPUTS

DIG8/2

DIG8/0

DIG7/2

DIG7/0

DIG7/1

DIG7/3

DIG8/1

DIG8/3

DIG5/0

DIG5/1

DIG5/2

DIG5/3

DIG6/0

DIG6/1

DIG6/2

DIG6/3

DIG5/7

DIG5/6

DIG5/5

DIG5/4

DIG6/6

DIG6/5

DIG6/4

DIG6/7

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U21

IBUF8

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U23

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read6

P207

IPAD
P209

IPAD
P213

IPAD

P215

IPAD

P205

IPAD

P202

IPAD

P199

IPAD
P197

IPAD

MON6-0

MON6-1

MON6-2

MON6-3

MON6-4

MON6-5

MON6-6

MON6-7

MON 6 INPUTS

DIG15/3

DIG15/2

DIG15/1

DIG15/0

DIG7/4

DIG7/5

DIG7/6

DIG7/7

U11

GND

D8

D9

D10

D11

D12

D13

D14

D15

D8

D9

D10

D11

D12

D13

D14

D15

U22

GND

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U37

IBUF8

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U45

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read7

P8

IPAD
P4

IPAD
P2

IPAD

P9

IPAD

P5

IPAD

P3

IPAD

P216

IPAD
P214

IPAD

MON7-0

MON7-1

MON7-2

MON7-3

MON7-4

MON7-5

MON7-6

MON7-7

MON 7 INPUTS

DIG14/0

DIG14/1

DIG14/2

DIG14/3

DIG14/4

DIG14/5

DIG15/4

DIG15/5

U24

GND

D8

D9

D10

D11

D12

D13

D14

D15

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U43

IBUF8

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U46

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read8

P56

IPAD
P54

IPAD
P52

IPAD

P50

IPAD

P48

IPAD

MON8-0

MON8-1

MON8-2

MON8-3

MON8-4

MON 8 INPUTS

DIG11/4

DIG11/5

DIG11/6

DIG11/7

DIG12/4

U25

GND

D8

D9

D10

D11

D12

D13

D14

D15

C20

C21

C22

C23

C24

C25

C26

C27

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U47

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read2

U26

GND

D8

D9

D10

D11

D12

D13

D14

D15

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U49

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read3

U28

GND

D8

D9

D10

D11

D12

D13

D14

D15

C20

C21

C22

C23

C24

C25

C26

C27

C30

C31

C32

C33

C34

C35

C36

C37

C30

C31

C32

C33

C34

C35

C36

C37

P55

IPAD

P53

IPAD

P51

IPAD
P49

IPAD
P47

IPAD

P44

IPAD

P42

IPAD

P39

IPAD

DIG11/0

DIG11/1

DIG11/2

DIG11/3

DIG12/0

DIG12/1

DIG12/2

DIG12/3

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

U55

IBUF8

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U57

BUFE16

D0

D1

D2

D3

D4

D5

D6

D7

Read9

MON9-0

MON9-1

MON9-2

MON9-3

MON9-4

MON9-5

MON9-6

MON9-7

U52

GND

D8

D9

D10

D11

D12

D13

D14

D15

MON 9 INPUTS

Figure B.12: F83 interface Xilinx local ports schematic

APPENDIX B: F83 Interface Schematics 95

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

6

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
_
m

m
\a

d
c
.s

c
h

A
D

C
 C

o
n

tr
o

l
&

 A
D

C
 S

c
a
li
n

g
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 M

M
 R

e
c
e
iv

e
r

X
il
in

x

D
a
te

:

I0 I1 I2 I3 I4 I5 I6 I7

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

U
5
6

IB
U

F
8

P
1
1
7

IP
A

D
P

1
1
8

IP
A

D
P

1
2
3

IP
A

D
P

1
2
4

IP
A

D
P

1
2
5

IP
A

D
P

1
2
6

IP
A

D
P

1
2
7

IP
A

D
P

1
2
8

IP
A

D

F
D

0

F
D

1

F
D

2

F
D

3

F
D

4

F
D

5

F
D

6

F
D

7

F
D

0

F
D

1

F
D

2

F
D

3

F
D

4

F
D

5

F
D

6

F
D

7

EU
6

O
B

U
F

E

EU
6
2

O
B

U
F

E

EU
6
3

O
B

U
F

E

P
1
1
1

O
P

A
D

P
6
4

O
P

A
D

P
1
1
0

O
P

A
D

O
E

N

O
E

N

O
E

N

3
_
6
8
6
4
M

H
Z

S
T

B

P
O

R
S

T

P
1
1
2

IP
A

D

U
8

IB
U

F

A
N

E
N

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
n
E

N

A
n
S

T

H
IG

H

A
n
B

S
Y

A
D

C
 S

e
q

u
e
n

c
in

g

R
S

T

C
L
K

A
D

C
R

Q

D
A

T
A

<
0
>

D
A

T
A

<
1
>

D
A

T
A

<
2
>

D
A

T
A

<
3
>

D
A

T
A

<
4
>

D
A

T
A

<
5
>

D
A

T
A

<
6
>

D
A

T
A

<
7
>

D
A

T
A

<
8
>

D
A

T
A

<
9
>

D
A

T
A

<
1
0
>

D
A

T
A

<
1
1
>

D
A

T
A

<
1
2
>

D
A

T
A

<
1
3
>

D
A

T
A

<
1
4
>

D
A

T
A

<
1
5
>

A
D

C
D

A
T

A
<

0
>

A
D

C
D

A
T

A
<

1
>

A
D

C
D

A
T

A
<

2
>

A
D

C
D

A
T

A
<

3
>

A
D

C
D

A
T

A
<

4
>

A
D

C
D

A
T

A
<

5
>

A
D

C
D

A
T

A
<

6
>

A
D

C
D

A
T

A
<

7
>

A
D

C
E

N

A
N

S
T

S
T

B

A
N

H
IG

H

B
U

S
Y

U
2
0

A
D

C
R

D
1
6

X
R

2

P
U

L
L

U
P

X
R

3

P
U

L
L

U
P

X
R

4

P
U

L
L

U
P

X
R

5

P
U

L
L

U
P

X
R

6

P
U

L
L

U
P

X
R

7

P
U

L
L

U
P

X
R

8

P
U

L
L

U
P

X
R

9

P
U

L
L

U
P

X
R

1
0

P
U

L
L

U
P

X
R

1
1

P
U

L
L

U
P

X
R

1
2

P
U

L
L

U
P

X
R

1
3

P
U

L
L

U
P

Figure B.13: F83 interface Xilinx ADC sequencing schematic

96 APPENDIX B: F83 Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

7

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

F
8
3
_
m

m
\t

ra
n
c
v
e
r.

s
c
h

T
ra

n
c
e
iv

e
r

d
ir

e
c
ti

o
n

 s
e
tu

p
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

F
8
3
 M

M
 R

e
c
e
iv

e
r

X
il
in

x

D
a
te

:

P
8
5

O
P

A
D

P
6
3

O
P

A
D

P
3
6

O
P

A
D

P
2
0

O
P

A
D

P
2
1
8

O
P

A
D

P
2
3
8

O
P

A
D

P
8
6

O
P

A
D

P
1
8

O
P

A
D

P
2
3
9

O
P

A
D

P
2
1
7

O
P

A
D

E I0 I1 I2 I3 I4 I5 I6 I7

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

U
3
1

O
B

U
F

E
8

E I0 I1 I2 I3 I4 I5 I6 I7

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

U
3
2

O
B

U
F

E
8

P
2
0
6

O
P

A
D

P
1
8
9

O
P

A
D

P
5
7

O
P

A
D

P
3
8

O
P

A
D

O
E

N

O
E

N

1 0 1 1 0 0 1 1 0 1 1 1 1

P
1
0
9

O
P

A
D

D
IR

1
 -

 I
N

P
U

T

D
IR

2
 -

 O
U

T
P

U
T

D
IR

3
 -

 I
N

P
U

T

D
IR

4
 -

 I
N

P
U

T

D
IR

5
 -

 O
U

T
P

U
T

D
IR

6
 -

 O
U

T
P

U
T

D
IR

1
0
 -

 I
N

P
U

T

D
IR

1
3
 -

 I
N

P
U

T

D
IR

1
4
 -

 I
N

P
U

T

D
IR

1
5
 -

 I
N

P
U

T

D
IR

7
 -

 I
N

P
U

T

D
IR

8
 -

 I
N

P
U

T

D
IR

1
1
 -

 I
N

P
U

T

D
IR

1
2
 -

 I
N

P
U

T

D
IR

9
 -

 O
U

T
P

U
T

1 1 1

Figure B.14: F83 interface Xilinx transceiver direction schematic

Appendix C

WVR Interface Schematics

1 2 3 4

A

B

C

D

4321

D

C

B

A

Revision: Sheet:

1.0 1

Total:

7

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\WVR PCB\WVR main.prj

Project SheetOriginator:

Issued:

ATNF RECEIVER GROUP

WVR Interface Board

Date:

ADC 1.sch

Digital IO 1.sch

DAC 1.sch

Connector.sch Xilinx 1.sch

Power Supply.sch

Figure C.1: WVR interface project sheet

97

98 APPENDIX C: WVR Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

2

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

W
V

R
 P

C
B

\A
D

C
 1

.s
c
h

A
D

C
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

W
V

R
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

2 31 8

6

7 4

5

U
1
8

A
D

6
2
0

R
6

3
0
K

1
 0

.1
%

R
7

1
0
K

0
 0

.1
%

+
1
5
V

-1
5
V

+
1
5
V

C
2
1

1
u
 1

0
V

2
V

5
R

E
F

C
3
2

1
0
0
n
 2

5
V

C
3
3

1
0
0
n
 2

5
V

C
2
9

3
u
3
 1

0
V

A
D

C
_
C

L
K

A
D

C
_
D

O
U

T

A
D

C
_
S

C
L

K

N
R

3

G
N

D
4

T
R

IM
5

V
O

U
T

6
V

IN
2

U
2
0

M
A

X
6
3
2
5

C
3
1

4
7
0
n
 2

5
V

2

6

1

7 4

8

3

U
2
1

O
P

-1
7
7

+
V

IN
1

-V
IN

2

+VDD
3

C
L
K

4

D
O

U
T

5

S
C

L
K

6

GND
7

V
R

E
F

8

U
2
2

A
D

S
1
2
5
2

C
2
0

1
0
0
n

A
N

+

A
N

-

+
5
V

+
1
5
V

-1
5
V

N
1
A

1
9

N
2
A

2
0

N
3
A

2
1

N
4
A

2
2

N
5
A

2
3

N
6
A

2
4

N
7
A

2
5

N
8
A

2
6

N
8
B

4
N

7
B

5
N

6
B

6
N

5
B

7
N

4
B

8
N

3
B

9
N

2
B

1
0

N
1
B

1
1

C
O

M
A

2
8

C
O

M
B

2

E
N

1
8

A
0

1
7

A
1

1
6

A
2

1
5

V+
1

V-
27

GND
12

U
1
6

M
A

X
3
0
7
C

W
I

N
1
A

1
9

N
2
A

2
0

N
3
A

2
1

N
4
A

2
2

N
5
A

2
3

N
6
A

2
4

N
7
A

2
5

N
8
A

2
6

N
8
B

4
N

7
B

5
N

6
B

6
N

5
B

7
N

4
B

8
N

3
B

9
N

2
B

1
0

N
1
B

1
1

C
O

M
A

2
8

C
O

M
B

2

E
N

1
8

A
0

1
7

A
1

1
6

A
2

1
5

V+
1

V-
27

GND
12

U
1
7

M
A

X
3
0
7
C

W
I

+
1
5
V

+
1
5
V

-1
5
V

-1
5
V

M
U

X
_
A

_
E

N

M
U

X
_
A

0

M
U

X
_
A

1

M
U

X
_
A

2

M
U

X
_
B

_
E

N

A
N

+

A
N

+

A
N

-

A
N

-

M
U

X
_
A

0

M
U

X
_
A

1

M
U

X
_
A

2

A
N

I1
+

A
N

I1
-

A
N

I2
+

A
N

I2
-

A
N

I3
+

A
N

I3
-

A
N

I4
+

A
N

I4
-

A
N

I5
+

A
N

I5
-

A
N

I6
+

A
N

I6
-

A
N

I7
+

A
N

I7
-

A
N

I8
+

A
N

I8
-

A
N

I9
+

A
N

I9
-

A
N

I1
0
+

A
N

I1
0
-

A
N

I1
1
+

A
N

I1
1
-

A
N

I1
2
+

A
N

I1
2
-

A
N

I1
3
+

A
N

I1
3
-

A
N

I1
4
+

A
N

I1
4
-

A
N

I1
5
+

A
N

I1
5
-

A
N

I0
+

A
N

I0
-

Figure C.2: WVR interface ADC schematic

APPENDIX C: WVR Interface Schematics 99

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

3

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

W
V

R
 P

C
B

\C
o
n
n
e
c
to

r.
s
c
h

R
F

I
F

il
te

ri
n

g
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

W
V

R
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

1
a

2
a

3
a

4
a

5
a

6
a

7
a

8
a

9
a

1
0
a

1
1
a

1
2
a

1
3
a

1
4
a

1
5
a

1
6
a

1
7
a

1
8
a

1
9
a

2
0
a

2
1
a

2
2
a

2
3
a

2
4
a

2
5
a

2
6
a

2
7
a

2
8
a

2
9
a

3
0
a

3
1
a

3
2
a

J
1
A

D
IN

6
4

1
c

2
c

3
c

4
c

5
c

6
c

7
c

8
c

9
c

1
0
c

1
1
c

1
2
c

1
3
c

1
4
c

1
5
c

1
6
c

1
7
c

1
8
c

1
9
c

2
0
c

2
1
c

2
2
c

2
3
c

2
4
c

2
5
c

2
6
c

2
7
c

2
8
c

2
9
c

3
0
c

3
1
c

3
2
c

J
1
B

D
IN

6
4

F
A

N
I1

+

F
A

N
I2

+

F
A

N
I3

+

F
A

N
I4

+

F
A

N
I5

+

F
A

N
I6

+

F
A

N
I7

+

F
A

N
I8

+

F
A

N
I9

+

F
A

N
I1

0
+

F
A

N
I1

1
+

F
A

N
I1

2
+

F
A

N
I1

3
+

F
A

N
I1

4
+

F
A

N
I1

5
+

F
A

N
I0

+

F
A

N
O

1
+

F
A

N
O

2
+

F
A

N
O

3
+

F
A

N
O

0
+

F
D

IG
0

F
D

IG
1

F
D

IG
2

F
D

IG
3

F
D

IG
4

F
D

IG
5

F
D

IG
6

F
D

IG
7

F
D

IG
8

F
D

IG
9

F
D

IG
1
0

F
D

IG
1
1

F
D

IG
1
2

F
D

IG
1
3

F
D

IG
1
4

F
D

IG
1
5

F
G

N
D

F
G

N
D

F
G

N
D

F
G

N
D

F
+

2
0
V

F
-2

0
V

F
A

N
I1

-

F
A

N
I2

-

F
A

N
I3

-

F
A

N
I4

-

F
A

N
I5

-

F
A

N
I6

-

F
A

N
I7

-

F
A

N
I8

-

F
A

N
I9

-

F
A

N
I1

0
-

F
A

N
I1

1
-

F
A

N
I1

2
-

F
A

N
I1

3
-

F
A

N
I1

4
-

F
A

N
I1

5
-

F
A

N
I0

-

F
A

N
O

1
-

F
A

N
O

2
-

F
A

N
O

3
-

F
A

N
O

0
-

1 6 2 7 3 8 4 9 5

J
2

D
B

9

F
D

IF
G

N
D

F
D

IF
A

+

F
D

IF
A

-

F
D

IF
B

+

F
D

IF
B

-

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

3

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

4

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

7

N
F

A
6
2
R

F
D

IF
G

N
D

F
D

IF
A

+

F
D

IF
A

-

F
D

IF
B

+

F
D

IF
B

-

F
A

N
I1

+

F
A

N
I2

+

F
A

N
I3

+

F
A

N
I4

+

F
A

N
I5

+

F
A

N
I6

+

F
A

N
I7

+

F
A

N
I8

+

F
A

N
I0

+

F
A

N
I1

-

F
A

N
I2

-

F
A

N
I3

-

F
A

N
I4

-

F
A

N
I5

-

F
A

N
I6

-

F
A

N
I7

-

F
A

N
I8

-

F
A

N
I0

-

A
N

I1
+

A
N

I1
-

A
N

I2
+

A
N

I2
-

A
N

I3
+

A
N

I3
-

A
N

I4
+

A
N

I4
-

A
N

I5
+

A
N

I5
-

A
N

I6
+

A
N

I6
-

A
N

I7
+

A
N

I7
-

A
N

I0
+

A
N

I0
-

A
N

I8
+

A
N

I8
-

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

5

N
F

A
6
2
R

F
D

IF
G

N
D

D
IF

A
+

D
IF

A
-

D
IF

B
+

D
IF

B
-

G
N

D

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

8

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

9

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

1
0

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

1
1

N
F

A
6
2
R

F
A

N
I9

+

F
A

N
I1

0
+

F
A

N
I1

1
+

F
A

N
I1

2
+

F
A

N
I1

3
+

F
A

N
I1

4
+

F
A

N
I1

5
+

F
A

N
O

1
+

F
A

N
O

2
+

F
A

N
O

3
+

F
A

N
O

0
+

F
D

IG
0

F
D

IG
1

F
A

N
I9

-

F
A

N
I1

0
-

F
A

N
I1

1
-

F
A

N
I1

2
-

F
A

N
I1

3
-

F
A

N
I1

4
-

F
A

N
I1

5
-

F
A

N
O

1
-

F
A

N
O

2
-

F
A

N
O

3
-

F
A

N
O

0
-

A
N

O
0
+

A
N

O
1
+

A
N

O
2
+

A
N

O
3
+

G
N

D

G
N

D

G
N

D

G
N

D

A
N

I9
+

A
N

I9
-

A
N

I1
0
+

A
N

I1
0
-

A
N

I1
1
+

A
N

I1
1
-

A
N

I1
2
+

A
N

I1
2
-

A
N

I1
3
+

A
N

I1
3
-

A
N

I1
4
+

A
N

I1
4
-

A
N

I1
5
+

A
N

I1
5
-

D
IG

0

D
IG

1

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

1
2

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

1
3

N
F

A
6
2
R

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

1
4

N
F

A
6
2
R

F
D

IG
2

F
D

IG
3

F
D

IG
4

F
D

IG
5

F
D

IG
6

F
D

IG
7

F
D

IG
8

F
D

IG
9

F
D

IG
1
0

F
D

IG
1
1

F
D

IG
1
2

F
D

IG
1
3

F
D

IG
1
4

F
D

IG
1
5

F
G

N
D

F
G

N
D

F
G

N
D

F
G

N
D

F
+

2
0
V

F
-2

0
V

1 2 3 4 5 6
7891
0

1
1

1
2

L
F

1
5

N
F

A
6
2
R

F
+

2
0
V

F
-2

0
V

F
G

N
D

F
G

N
D

D
IG

2

D
IG

3

D
IG

4

D
IG

5

D
IG

6

D
IG

7

D
IG

8

D
IG

9

D
IG

1
0

D
IG

1
1

D
IG

1
2

D
IG

1
3

D
IG

1
4

D
IG

1
5

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

+
2
0
V

+
2
0
V

-2
0
V

-2
0
V

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

S
H

G
N

D

Figure C.3: WVR interface RFI filtering schematic

100 APPENDIX C: WVR Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

4

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

W
V

R
 P

C
B

\D
ig

it
a
l
IO

 1
.s

c
h

D
ig

it
a
l
I/
O

 1
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

W
V

R
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
8

M
A

X
4
8
7

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
1
1

M
A

X
4
8
7

V
C

C

V
C

C

B
D

if
1

B
D

if
2

D
if

D
ir

1

D
if

D
ir

2

C
1
4

1
0
0
n

C
1
5

1
0
0
n

D
IF

A
+

D
IF

A
-

D
IF

B
+

D
IF

B
-

Figure C.4: WVR interface digital I/O schematic

APPENDIX C: WVR Interface Schematics 101

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

5

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

W
V

R
 P

C
B

\D
A

C
 1

.s
c
h

D
A

C
 1

O
ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

W
V

R
 I
n

te
rf

a
c
e
 B

o
a
rd

D
a
te

:

2
V

5
R

E
F

D
A

C
A

D
A

C
B

D
A

C
C

D
A

C
D

D
A

C
C

S

D
A

C
D

I

D
A

C
C

K

D
A

C
D

O

D
A

C
R

S

+
5
V

C
3
0

2
u
2

AGND
1

F
B

A
2

O
U

T
A

3

O
U

T
B

4

F
B

B
5

R
E

F
A

B
6

C
L

7

C
S

8

D
IN

9

S
C

L
K

1
0

DGND
11

D
O

U
T

1
2

U
P

O
1
3

P
D

L
1
4

R
E

F
C

D
1
5

F
B

C
1
6

O
U

T
C

1
7

O
U

T
D

1
8

F
B

D
1
9

VDD
20

U
2
3

M
A

X
5
2
5

R
8

1
0
K

 0
.1

%

+
3

-
2

1

4 11

U
2
4
A

L
M

8
3
7

+
5

-
6

7

U
2
4
B

L
M

8
3
7

R
9

1
0
K

 0
.1

%

R
1
0

1
0
K

 0
.1

%

R
2
4

3
0
K

 0
.1

%
-1

5
V

+
1
5
V

2
V

5
R

E
F

R
2
8

1
2
0
R

R
1
1

1
0
K

 0
.1

%

+
1
0

-
9

8

U
2
4
C

L
M

8
3
7

+
1
2

1
4

-
1
3

U
2
4
D

L
M

8
3
7

R
1
2

1
0
K

 0
.1

%

R
1
3

1
0
K

 0
.1

%

R
2
5

3
0
K

 0
.1

%

2
V

5
R

E
F

R
2
9

1
2
0
R

R
1
4

1
0
K

 0
.1

%

+
3

-
2

1

4 11

U
2
5
A

L
M

8
3
7

+
5

-
6

7

U
2
5
B

L
M

8
3
7

R
1
6

1
0
K

 0
.1

%

R
2
0

1
0
K

 0
.1

%

R
2
6

3
0
K

 0
.1

%
-1

5
V

+
1
5
V

2
V

5
R

E
F

R
3
0

1
2
0
R

R
2
1

1
0
K

 0
.1

%

+
1
0

-
9

8

U
2
5
C

L
M

8
3
7

+
1
2

1
4

-
1
3

U
2
5
D

L
M

8
3
7

R
2
2

1
0
K

 0
.1

%

R
2
3

1
0
K

 0
.1

%

R
2
7

3
0
K

 0
.1

%

2
V

5
R

E
F

R
3
1

1
2
0
R

D
A

C
A

D
A

C
B

D
A

C
C

D
A

C
D

A
N

O
0
+

A
N

O
1
+

A
N

O
2
+

A
N

O
3
+

Figure C.5: WVR interface DAC schematic

102 APPENDIX C: WVR Interface Schematics

1 2 3 4

A

B

C

D

4321

D

C

B

A

Revision: Sheet:

1.0 6

Total:

7

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\WVR PCB\Xilinx 1.sch

Xilinx SupportOriginator:

Issued:

ATNF RECEIVER GROUP

WVR Interface

Date:

G
N

D
1

GCLK1-I/O
2

I/O
3

I/O
4

I/O
5

TDI-I/O
6

TCK-I/O
7

G
N

D
8

I/O
9

I/O
10

I/O
12

I/O
13

I/O
14

I/O
15

I/O
16

TMS-I/0
11

V
C

C
1
8

I/O
19

I/O
20

I/O
21

I/O
23

I/O
24

I/O
25

I/O
26

G
N

D
2
7

I/O
28

I/O
29

I/O
30

I/O
31

I/O
32

GCLK2-I/O
33

M1
34

G
N

D
3
5

M0
36

PWRDWN
38

GCLK3-I/O
39

HDC-I/O
40

I/O
41

I/O
42

I/O
43

LDC-I/O
44

G
N

D
4
5

I/O
46

I/O
47

I/O
48

I/O
49

I/O
50

I/O
51

I/O
52

INIT-I/O
53

V
C

C
5
4

G
N

D
5
5

I/O
56

I/O
57

I/O
58

I/O
59

I/O
60

I/O
61

I/O
62

I/O
63

G
N

D
6
4

I/O
65

I/O
66

I/O
67

I/O
68

I/O
69

GCLK4-I/O
70

G
N

D
7
1

DONE
72

V
C

C
7
3

PROG
74

I/O
75

GCLK5-I/O
76

I/O
77

I/O
78

I/O
79

I/O
80

I/O
89

G
N

D
8
1

I/O
82

I/O
84

I/O
85

I/O
86

I/O
87

I/O
88

V
C

C
9
0

G
N

D
9
1

I/O
92

I/O
93

I/O
94

I/O
95

I/O
96

I/O
97

I/O
99

G
N

D
1
0
0

I/O
101

I/O
102

I/O
103

I/O
104

DIN-I/O
105

DOUT-GCLK6-I/O
106

CCLK
107

V
C

C
1
0
8

TDO-O
109

G
N

D
1
1
0

I/O
111

GCLK7-I/O
112

I/O
113

I/O
114

I/O
115

I/O
116

I/O
117

G
N

D
1
1
8

I/O
119

I/O
120

I/O
121

I/O
122

I/O
123

I/O
124

I/O
125

I/O
126

G
N

D
1
2
7

V
C

C
1
2
8

I/O
129

I/O
130

I/O
131

I/O
132

I/O
133

I/O
134

I/O
135

I/O
136

G
N

D
1
3
7

I/O
138

I/O
139

I/O
140

I/O
141

I/O
142

V
C

C
1
4
4

I/O
22

V
C

C
3
7

I/O
83

I/O
98

GCLK8-I/0
143

G
N

D
1
7

U7

XCS20XLTQ144

PROG

R5

4K7

INIT

VCC

CCLK

DONE

DIN

3_6864MHz

BDif1

BDif2

DifDir1

DifDir2

+3V3

MUX_A_EN

MUX_A0

MUX_A1

MUX_A2

MUX_B_EN

DACCS

DACCK

DACDI

DACDO

DACRS

ADC_CLK

ADC_DOUT

ADC_SCLK

DIG0

DIG1

DIG2

DIG3

DIG4

DIG5

DIG6

DIG7

DIG8

DIG9

DIG10

DIG11

DIG12

DIG13

DIG14

DIG15

3_6864MHz

LF1

NFM40R

VCC

C10

100n

LF2

NFM40R

EN
1

V
C

C
4

G
N

D
2

OUT
3

U19

ECS3951C

OSCEN

R1

4K7

+3V3

C16

100n

C17

100n

C18

100n

C19

100n

+3V3

PROG

G
N

D
1
0

V
C

C
2
0

4

D
2

CE
8

RST
6

RDY
15

SEREN
17

CEO
18

WP1
5

WP2
7

U26
AT17LV010

INIT

DONE

DIN

CCLK

+3V3

R3

4K7

R4

4K7

+3V3

+3V3

Figure C.6: WVR interface Xilinx support schematic

APPENDIX C: WVR Interface Schematics 103

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

B
7

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

W
V

R
 P

C
B

\P
o
w

e
r

S
u
p
p
ly

.s
c
h

P
o

w
e
r

S
u

p
p

ly
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

W
V

R
 I
n

te
rf

a
c
e

D
a
te

:

V
in

1

GND
2

+
5
V

3

U
2

M
C

7
8
0
5
T

C
1

4
u
7
 2

5
V

C
3

1
u
 1

0
V

C
4

4
7
0
n
 2

5
V

C
5

4
7
0
n
 2

5
V

C
2

4
u
7
 2

5
V

-5
1

V
in

2

V
in

3

V
in

6

V
in

7

GND
5

U
3

L
M

7
9
L

1
5
A

C
M

V
C

C

V
IN

3

S
C

4

V
O

U
T

5

S
P

G
8

L
B

F
1

GND
7

U
5

Z
L

D
0
3
3
0

C
7

1
0
p

C
8

1
u
 1

0
V

+
3
V

3

C
9

1
0
0
n

V
C

C

V
in

8
+

5
1

GND
3

GND
6

GND
7

GND
2

U
1
3

L
M

7
8
L

1
5
A

C
M

V
in

8
+

5
1

GND
3

GND
6

GND
7

GND
2

U
1
4

L
M

7
8
L

0
5
A

C
M

+
1
5
V

-1
5
V

+
5
V

C
6

1
u
 1

0
V

+
2
0
V -2
0
V

Figure C.7: WVR interface power supply schematic

104 APPENDIX C: WVR Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

2

T
o
ta

l:

7

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

w
v
rx

il\
c
o
m

m
s
.s

c
h

D
a
ta

s
e
t

C
o

m
m

s
 &

 A
D

C
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

W
V

R
 X

il
in

x

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

U
3

O
B

U
F

P
1
4
3

IP
A

D

R
S

T

C
L
K

R
X

D

D
S

A
<

0
>

D
S

A
<

1
>

D
S

A
<

2
>

D
S

A
<

3
>

D
S

A
<

4
>

D
A

T
A

<
0
>

D
A

T
A

<
1
>

D
A

T
A

<
2
>

D
A

T
A

<
3
>

D
A

T
A

<
4
>

D
A

T
A

<
5
>

D
A

T
A

<
6
>

D
A

T
A

<
7
>

D
A

T
A

<
8
>

D
A

T
A

<
9
>

D
A

T
A

<
1
0
>

D
A

T
A

<
1
1
>

D
A

T
A

<
1
2
>

D
A

T
A

<
1
3
>

D
A

T
A

<
1
4
>

D
A

T
A

<
1
5
>

A
D

D
<

0
>

A
D

D
<

1
>

A
D

D
<

2
>

A
D

D
<

3
>

A
D

D
<

4
>

A
D

D
<

5
>

A
D

D
<

6
>

A
D

D
<

7
>

A
D

D
<

8
>

W
R

S
T

B

T
X

D

T
X

D
_
E

N

B
A

U
D

<
0
>

B
A

U
D

<
1
>

B
A

U
D

<
2
>

B
A

U
D

<
3
>

P
A

R

E
R

R

U
1
7

D
A

T
A

S
E

T

P
5
9

IP
A

D

P
5
7

O
P

A
D

U
1
5

IB
U

F

T
X

D

C
L

K

R
X

D

1 0 0 0 1 1 0 0

0

W
R

S
T

B

C
E

C C
L
R

Q
0

Q
1

Q
2

Q
3

C
E

O

T
C

U
1
2

C
B

4
C

E

U
1
6

IN
V

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

U
7

B
U

F
G

3
_
6
8
6
4
M

H
Z

B
R

X
D

3
_
6
8
6
4
M

H
Z

P
O

R
S

T

P
O

R
S

T

P
o

w
e
r

o
n

 R
e
s
e
t

D
a
ta

s
e
t

S
ta

te
 M

a
c
h

in
e

1
1
5
2
0
0
 B

P
S

D
S

A
 =

 2

P
A

R
E

R
R 0

P
5
8

O
P

A
D

P
6
0

O
P

A
D

U
1
0

O
B

U
F

U
1
4

O
B

U
F

0

X
IL

IN
X

P
A

R
T

T
Y

P
E

=
X

C
S

2
0
X

L
T

Q
1
4
4
-4

U
1

G
N

D

U
2

V
C

C

01

R
S

T

C
L
K

A
N

E

D
A

T
A

<
0
>

D
A

T
A

<
1
>

D
A

T
A

<
2
>

D
A

T
A

<
3
>

D
A

T
A

<
4
>

D
A

T
A

<
5
>

D
A

T
A

<
6
>

D
A

T
A

<
7
>

D
A

T
A

<
8
>

D
A

T
A

<
9
>

D
A

T
A

<
1
0
>

D
A

T
A

<
1
1
>

D
A

T
A

<
1
2
>

D
A

T
A

<
1
3
>

D
A

T
A

<
1
4
>

D
A

T
A

<
1
5
>

A
D

C
D

A
T

A

A
D

D
<

0
>

A
D

D
<

1
>

A
D

D
<

2
>

M
U

X
A

D
D

<
0
>

M
U

X
A

D
D

<
1
>

M
U

X
A

D
D

<
2
>

A
D

C
C

L
K

A
D

C
S

C
L
K

S
T

B

D
A

T
A

<
1
6
>

D
A

T
A

<
1
7
>

D
A

T
A

<
1
8
>

D
A

T
A

<
1
9
>

D
A

T
A

<
2
0
>

D
A

T
A

<
2
1
>

D
A

T
A

<
2
2
>

D
A

T
A

<
2
3
>

A
D

D
<

3
>

M
U

X
1
E

N

M
U

X
2
E

N

U
1
8

W
V

R
A

D
C

2
4

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

A
0

A
1

A
2

P
O

R
S

T
3
_
6
8
6
4
M

H
z

S
T

B

U
1
3

IN
V

W
R

U
4

O
B

U
F

U
5

O
B

U
F

U
6

O
B

U
F

U
8

O
B

U
F

U
9

O
B

U
F

U
1
1

IB
U

F

P
1
1
6

O
P

A
D

P
1
1
7

O
P

A
D

P
1
1
9

O
P

A
D

P
1
2
2

O
P

A
D

P
1
2
4

O
P

A
D

P
1
2
3

IP
A

D

U
1
9

O
B

U
F

U
2
0

O
B

U
F

P
1
2
0

O
P

A
D

P
1
2
1

O
P

A
D

A
3

U
2
2

A
N

D
2
B

1

A
4

A
N

E

A
N

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

C
E C

C
L
R

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

U
2
3

F
D

8
C

E
0 A

N
E

U
2
1

IN
V

S
T

B

E I0 I1 I2 I3 I4 I5 I6 I7

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

U
2
4

B
U

F
E

8

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

U
2
5

A
N

D
2

A
4

Figure C.8: WVR interface Xilinx schematic

Appendix D

Conversion Interface Schematics

1 2 3 4

A

B

C

D

4321

D

C

B

A

Revision: Sheet:

1.0 1

Total:

6

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\MMConversionInterface\Conversion main.prj

Project SheetOriginator:

Issued:

ATNF RECEIVER GROUP

MM Conversion Interface Boa

Date:

Error : csiro.bmp file not found.

ADC 1.sch

Digital IO 1.sch

Connector.sch

Xilinx 1.sch

Power Supply.sch

Figure D.1: MM conversion interface project sheet

105

106 APPENDIX D: Conversion Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

3

T
o
ta

l:

6

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

M
M

C
o
n
v
e
rs

io
n
In

te
rf

a
c
e
\A

D
C

.s
c
h

A
D

C
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

M
M

 C
o

n
v
e
rs

io
n

 I
n

te
rf

a
c
e
 B

o
a

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

V
IN

1

A
G

N
D

1
2

R
E

F
3

C
A

P
4

A
G

N
D

2
5

D
G

N
D

1
4

D
1
5
(M

S
B

)
6

D
1
4

7

D
1
3

8

D
1
2

9

D
1
1

1
0

D
1
0

1
1

D
9

1
2

D
8

1
3

D
7

1
5

D
6

1
6

D
5

1
7

D
4

1
8

D
3

1
9

D
2

2
0

D
1

2
1

D
0

2
2

B
Y

T
E

2
3

R
/C

2
4

C
S

2
5

B
U

S
Y

2
6

V
A

N
A

2
7

V
D

IG
2
8

U
2

L
T

C
1
6
0
5
-2

C
G

C
1
9

4
n
7

C
2
0

1
0
u
F

C
2
1

1
0
u
F

A
n
S

T

V
C

C

A
n
E

N
A

n
B

S
Y

+
5
V

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

H
IG

H
C

2
2
u
2

C
3

2
u
2

R
1

2
0
0
R

 1
%

L
2

1
0
0
u
H

V
C

C
+

5
V

R
2

3
3
K

2
 1

%

A
0

1

E
N

2

VSS-
3

1
A

 I
N

4

2
A

 I
N

5

3
A

 I
N

6

4
A

 I
N

7

A
 O

U
T

8
B

 O
U

T
9

4
B

 I
N

1
0

3
B

 I
N

1
1

2
B

 I
N

1
2

1
B

 I
N

1
3

V+
14

GND
15

A
1

1
6

U
9

M
A

X
3
0
9
C

S
E

+
1
5
V

-1
5
V

C
1
1

1
0
0
n

C
1
2

1
0
0
n

-1
5
V

+
1
5
V

A
0

1

E
N

2

VSS-
3

1
A

 I
N

4

2
A

 I
N

5

3
A

 I
N

6

4
A

 I
N

7

A
 O

U
T

8
B

 O
U

T
9

4
B

 I
N

1
0

3
B

 I
N

1
1

2
B

 I
N

1
2

1
B

 I
N

1
3

V+
14

GND
15

A
1

1
6

U
1
0

M
A

X
3
0
9
C

S
E

+
1
5
V

-1
5
V

R
E

F
1

-I
N

2

+
IN

3

V-
4

S
e
n
se

5

V
o

6

V+
7

- +

U
1
7

S
S

M
-2

1
4
3

-1
5
V

+
1
5
V

A
0

1

E
N

2

VSS-
3

1
A

 I
N

4

2
A

 I
N

5

3
A

 I
N

6

4
A

 I
N

7

A
 O

U
T

8
B

 O
U

T
9

4
B

 I
N

1
0

3
B

 I
N

1
1

2
B

 I
N

1
2

1
B

 I
N

1
3

V+
14

GND
15

A
1

1
6

U
1
1

M
A

X
3
0
9
C

S
E

+
1
5
V

-1
5
V

R
7

1
M

A
N

1
+

A
N

1
-

A
N

2
+

A
N

2
-

A
N

3
+

A
N

3
-

A
N

4
+

A
N

4
-

A
N

5
+

A
N

5
-

A
N

6
+

A
N

6
-

A
N

7
+

A
N

7
-

A
N

8
+

A
N

8
-

A
N

9
+

A
N

9
-

A
N

1
0
+

A
N

1
0
-

A
N

1
1
+

A
N

1
1
-

A
N

1
2
+

A
N

1
2
-

A
N

A
0

A
N

A
1

A
N

A
0

A
N

A
1

A
N

A
0

A
N

A
1

A
N

E
N

1

A
N

E
N

2

A
N

E
N

3

Figure D.2: MM conversion interface ADC schematic

APPENDIX D: Conversion Interface Schematics 107

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

3

T
o
ta

l:

6

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

M
M

C
o
n
v
e
rs

io
n
In

te
rf

a
c
e
\C

o
n
n
e
c
to

r.
s
c
h

C
o

n
n

e
c
to

rs
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

M
M

 C
o

n
v
e
rs

io
n

 I
n

te
rf

a
c
e
 B

o
a

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

A

P
1
A

S
M

P
L

2
0
M

B

P
1
B

S
M

P
L

2
0
M

C

P
1
C

S
M

P
L

2
0
M

D

P
1
D

S
M

P
L

2
0
M

E

P
1
E

S
M

P
L

2
0
M

F

P
1
F

S
M

P
L

2
0
M

H

P
1
G

S
M

P
L

2
0
M

J

P
1
H

S
M

P
L

2
0
M

K

P
1
I

S
M

P
L

2
0
M

L

P
1
J

S
M

P
L

2
0
M

M

P
1
K

S
M

P
L

2
0
M

N

P
1
L

S
M

P
L

2
0
M

P

P
1
M

S
M

P
L

2
0
M

R

P
1
N

S
M

P
L

2
0
M

+
2
0
V

-2
0
V

+
9
V

T
X

D
+

T
X

D
-

R
X

D
+

R
X

D
-

E
V

E
N

T
+

E
V

E
N

T
-

W
A

V
E

+

W
A

V
E

-

B
D

IG
3
/6

B
D

IG
3
/7

B
D

IG
6
/6

B
D

IG
6
/7

S

P
1
O

S
M

P
L

2
0
M

T

P
1
P

S
M

P
L

2
0
M

D
IG

1
/0

D
IG

1
/1

D
IG

1
/2

D
IG

1
/3

D
IG

1
/4

J2
A

S
M

P
L

3
4
F

J2
B

S
M

P
L

3
4
F

J2
C

S
M

P
L

3
4
F

J2
D

S
M

P
L

3
4
F

J2
E

S
M

P
L

3
4
F

J2
F

S
M

P
L

3
4
F

J2
G

S
M

P
L

3
4
F

J2
H

S
M

P
L

3
4
F

J2
I

S
M

P
L

3
4
F

J2
J

S
M

P
L

3
4
F

J2
K

S
M

P
L

3
4
F

J2
L

S
M

P
L

3
4
F

J2
M

S
M

P
L

3
4
F

J2
N

S
M

P
L

3
4
F

J2
O

S
M

P
L

3
4
F

J2
P

S
M

P
L

3
4
F

J2
Q

S
M

P
L

3
4
F

A
N

1
+

A
N

1
-

A
N

2
+

A
N

2
-

A
N

3
+

A
N

3
-

A
N

4
+

A
N

4
-

A
N

5
+

A
N

5
-

A
N

6
+

A
N

6
-

D
IG

1
/5

D
IG

1
/6

D
IG

1
/7

D
IG

2
/0

D
IG

2
/1

D
IG

2
/2

D
IG

2
/3

D
IG

2
/4

D
IG

2
/5

D
IG

2
/6

D
IG

2
/7

D
IG

3
/0

D
IG

3
/1

J2
R

S
M

P
L

3
4
F

J2
S

S
M

P
L

3
4
F

J2
T

S
M

P
L

3
4
F

J2
U

S
M

P
L

3
4
F

J2
V

S
M

P
L

3
4
F

J2
W

S
M

P
L

3
4
F

J2
X

S
M

P
L

3
4
F

J2
Y

S
M

P
L

3
4
F

J2
Z

S
M

P
L

3
4
F

J2
[

S
M

P
L

3
4
F

J2
\

S
M

P
L

3
4
F

J2
]

S
M

P
L

3
4
F

J2
^

S
M

P
L

3
4
F

J2
_

S
M

P
L

3
4
F

J2
`

S
M

P
L

3
4
F

J2
a

S
M

P
L

3
4
F

J2
b

S
M

P
L

3
4
F

+
3
V

3

+
3
V

3

D
IG

3
/2

D
IG

3
/3

A
N

7
+

A
N

7
-

A
N

8
+

A
N

8
-

A
N

9
+

A
N

9
-

A
N

1
0
+

A
N

1
0
-

A
N

1
1
+

A
N

1
1
-

A
N

1
2
+

A
N

1
2
-

J3
A

S
M

P
L

3
4
F

J3
B

S
M

P
L

3
4
F

J3
C

S
M

P
L

3
4
F

J3
D

S
M

P
L

3
4
F

J3
E

S
M

P
L

3
4
F

J3
F

S
M

P
L

3
4
F

J3
G

S
M

P
L

3
4
F

J3
H

S
M

P
L

3
4
F

J3
I

S
M

P
L

3
4
F

J3
J

S
M

P
L

3
4
F

J3
K

S
M

P
L

3
4
F

J3
L

S
M

P
L

3
4
F

J3
M

S
M

P
L

3
4
F

J3
N

S
M

P
L

3
4
F

D
IG

3
/4

D
IG

3
/5

D
IG

3
/6

D
IG

3
/7

D
IG

4
/0

D
IG

4
/1

D
IG

4
/2

D
IG

4
/3

D
IG

4
/4

D
IG

4
/5

D
IG

4
/6

D
IG

4
/7

D
IG

5
/0

J3
O

S
M

P
L

3
4
F

J3
P

S
M

P
L

3
4
F

J3
Q

S
M

P
L

3
4
F

J3
R

S
M

P
L

3
4
F

J3
S

S
M

P
L

3
4
F

J3
T

S
M

P
L

3
4
F

J3
U

S
M

P
L

3
4
F

J3
V

S
M

P
L

3
4
F

J3
W

S
M

P
L

3
4
F

J3
X

S
M

P
L

3
4
F

J3
Y

S
M

P
L

3
4
F

J3
Z

S
M

P
L

3
4
F

J3
[

S
M

P
L

3
4
F

D
IG

5
/1

J3
\

S
M

P
L

3
4
F

D
IG

5
/2

J3
]

S
M

P
L

3
4
F

J3
^

S
M

P
L

3
4
F

J3
_

S
M

P
L

3
4
F

J3
`

S
M

P
L

3
4
F

J3
a

S
M

P
L

3
4
F

J3
b

S
M

P
L

3
4
F

+
3
V

3

+
3
V

3

Figure D.3: MM conversion interface connector schematic

108 APPENDIX D: Conversion Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

4

T
o
ta

l:

6

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

M
M

C
o
n
v
e
rs

io
n
In

te
rf

a
c
e
\D

ig
it
a
l
1
.s

c
h

D
ig

it
a
l
I/
O

O
ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

M
M

 C
o

n
v
e
rs

io
n

 I
n

te
rf

a
c
e
 B

o
a

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
5

M
A

X
4
8
7

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
6

M
A

X
4
8
7

V
C

C

V
C

C

R
X

D

T
X

D

T
X

D
E

N

C
9

1
0
0
n

C
1
0

1
0
0
n

R
X

D
+

R
X

D
-

T
X

D
-

T
X

D
+

V
C

C

R
8

1
K

R
9

1
K

R
1
0

1
2
0
R

V
C

C

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
7

M
A

X
4
8
7

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
8

M
A

X
4
8
7

E
V

E
N

T

W
A

V
E

V
C

C

V
C

C

W
A

V
E

+

W
A

V
E

-

E
V

E
N

T
+

E
V

E
N

T
-

Figure D.4: MM conversion interface digital I/O schematic

APPENDIX D: Conversion Interface Schematics 109

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

5

T
o
ta

l:

6

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

M
M

C
o
n
v
e
rs

io
n
In

te
rf

a
c
e
\X

ili
n
x
 1

.s
c
h

X
il
in

x
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

M
M

 C
o

n
v
e
rs

io
n

 I
n

te
rf

a
c
e
 B

o
a

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

3
.6

8
6
4
M

H
z

C
8

1
0
0
n

IN
IT

D
O

N
E

D
IN

C
C

L
K

D
1

B
A

S
2
1
6

P
R

O
G

1 2 3 4 5

J1 H
E

A
D

E
R

 5

D
IN

C
C

L
K

V
C

C

P
R

O
G

IN
IT

C
C

L
K

D
O

N
E

D
IN

3
.6

8
6
4
M

H
z

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
n
B

S
Y

A
n
E

N
A

n
S

T
H

IG
H

A
N

E
N

3
A

N
A

0
A

N
A

1

+
3
V

3

+
3
V

3

C
1
3

1
0
0
n

C
1
4

1
0
0
n

C
1
5

1
0
0
n

C
1
6

1
0
0
n

+
3
V

3

E
N

1

G
4

V
8

O
U

T
5

U
1
3

3
.6

8
6
4
M

H
z

+
3
V

3

A
N

E
N

1
A

N
E

N
2

T
X

D
R

X
D

T
X

D
E

N
W

A
V

E
E

V
E

N
T

D
IG

1
/0

D
IG

1
/1

D
IG

1
/2

D
IG

1
/3

D
IG

1
/4

D
IG

1
/5

D
IG

1
/6

D
IG

1
/7

D
IG

2
/0

D
IG

2
/1

D
IG

2
/2

D
IG

2
/3

D
IG

2
/4

D
IG

2
/5

D
IG

2
/6

D
IG

2
/7

D
IG

3
/0

D
IG

3
/1

D
IG

3
/2

D
IG

3
/3

D
IG

3
/4

D
IG

3
/5

D
IG

3
/6

D
IG

3
/7

D
IG

4
/0

D
IG

4
/1

D
IG

4
/2

D
IG

4
/3

D
IG

4
/4

D
IG

4
/5

D
IG

4
/6

D
IG

4
/7

D
IG

5
/0

D
IG

5
/1

D
IG

5
/2

GND
5

VCC
8

2

D
1

C
E

4

R
S

T
3

S
E

R
E

N
7

C
E

O
6

U
4

A
T

1
7
L

V
2
5
6

R
P

1

4
K

7

S
E

R
E

N
P

R
O

G
D

IN
IN

IT

+
3
V

3

S
E

R
E

N

GND
1

G
C

L
K

1
-I

/O
2

I/
O

3

I/
O

/T
D

I
4

I/
O

/T
C

K
5

I/
O

/T
M

S
6

I/
O

7

I/
O

8

I/
O

9

I/
O

1
0

VCC
12

I/
O

1
3

I/
O

1
4

I/
O

1
5

I/
O

1
6

GND
11

I/
O

1
8

I/
O

1
9

I/
O

2
0

G
C

L
K

2
-I

/O
2
1

GND
23

M
0

2
4

VCC
25

P
W

R
D

N
2
6

G
C

L
K

3
-I

/O
2
7

H
D

C
-I

/O
2
8

I/
O

2
9

L
D

C
-I

/O
3
0

I/
O

3
1

I/
O

3
2

I/
O

3
3

I/
O

3
4

I/
O

3
5

IN
IT

-I
/O

3
6

GND
38

I/
O

3
9

I/
O

4
0

I/
O

4
1

I/
O

4
2

I/
O

4
3

I/
O

4
4

I/
O

4
5

I/
O

4
6

I/
O

4
7

G
C

L
K

4
-I

/O
4
8

GND
49

D
O

N
E

5
0

VCC
51

P
R

O
G

5
2

I/
O

5
3

G
C

L
K

5
-I

/O
5
4

I/
O

5
5

I/
O

5
6

I/
O

5
7

I/
O

5
8

I/
O

5
9

I/
O

6
0

I/
O

6
1

I/
O

6
2

VCC
63

GND
64

I/
O

6
5

I/
O

6
6

I/
O

6
7

I/
O

6
8

I/
O

6
9

I/
O

7
0

I/
O

7
1

D
IN

-I
/O

7
2

G
C

L
K

6
-I

/O
7
3

C
C

L
K

7
4

VCC
75

T
D

O
-O

7
6

GND
77

I/
O

7
8

G
C

L
K

7
-I

/O
7
9

I/
O

8
0

VCC
89

I/
O

8
1

I/
O

8
2

I/
O

8
4

I/
O

8
5

I/
O

8
6

I/
O

8
7

GND
88

I/
O

9
0

I/
O

9
1

I/
O

9
2

I/
O

9
3

I/
O

9
4

I/
O

9
5

I/
O

9
6

I/
O

9
7

G
C

L
K

8
-I

/O
9
9

M
1

2
2

VCC
37

I/
O

8
3

I/
O

9
8

I/
O

1
7

VCC
100

U
?

X
C

S
2
0
X

L
V

Q
1
0
0

+
3
V

3

Figure D.5: MM conversion interface Xilinx schematic

110 APPENDIX D: Conversion Interface Schematics

1
2

3
4

ABCD

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h
e
e
t:

1
.0

6

T
o
ta

l:

6

D
ra

w
n
:

C
h
e
c
k
e
d
:

A
p
p
ro

ve
d
:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h
e
m

a
ti
c
 F

ile
n
a
m

e
:

K
:\

M
M

C
o
n
v
e
rs

io
n
In

te
rf

a
c
e
\P

o
w

e
r

S
u
p
p
ly

.s
c
h

P
o

w
e
r

S
u

p
p

ly
O

ri
g
in

a
to

r:

Is
s
u
e
d
:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

M
M

 C
o

n
v
e
rs

io
n

 I
n

te
rf

a
c
e
 B

o
a

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

V
IN

3

S
C

4

V
O

U
T

5

S
P

G
8

L
B

F
1

GND
7

U
1

Z
L

D
0
3
3
0

C
1

2
u
2

C
5

1
0
p

+
3
V

3

C
7

1
0
0
n

V
C

C

V
IN

3

S
C

4

V
O

U
T

5

S
P

G
8

L
B

F
1

GND
7

U
1
2

Z
L

D
0
5
0
0

C
4

2
u
2

C
6

1
0
p

V
C

C

C
1
7

1
0
0
n

+
9
V

IN
8

O
U

T
1

GND
3

GND
6

GND
7

GND
2

U
?

L
M

7
8
L

1
5
A

C
M

O
U

T
1

IN
2

IN
3

IN
6

IN
7

GND
5

U
?

L
M

7
9
L

1
5
A

C
M

C
1
8

1
0
0
n

C
2
2

1
0
0
n

+
2
0
V

-2
0
V

C
2
3

4
u
7
 3

5
V

C
2
4

4
u
7
 3

5
V

-1
5
V

+
1
5
V

C
2
5

2
2
u
 1

6
V

Figure D.6: MM conversion interface power supply schematic

Appendix E

LO Interface Schematics

111

112 APPENDIX E: LO Interface Schematics

1
2

3
4

5
6

7
8

ABCD

8
7

6
5

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h

e
e
t:

B
1

T
o
ta

l:

1

D
ra

w
n

:

C
h

e
c
k
e
d

:

A
p

p
ro

ve
d

:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h

e
m

a
ti
c
 F

ile
n

a
m

e
:

K
:\
M

M
C

o
n
v
e
rs

io
n
In

te
rf

a
c
e
\M

M
 L

O
 I
n
te

rf
a
c
e
.s

c
h

M
M

 L
O

 I
n

te
rf

a
c
e
 B

o
a
rd

O
ri
g

in
a
to

r:

Is
s
u

e
d

:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

D
a
te

:

E
rr

o
r

:
cs

ir
o
.b

m
p
 f

il
e

n
o
t

fo
u
n
d
.

V
IN

3

S
C

4

V
O

U
T

5

S
P

G
8

L
B

F
1

GND
7

U
1

Z
L

D
0
3
3
0

C
1

2
u
2

C
5

1
0
p

+
3

V
3

C
6

1
0
0
n

+
9

V

V
IN

1

A
G

N
D

1
2

R
E

F
3

C
A

P
4

A
G

N
D

2
5

D
G

N
D

1
4

D
1

5
(M

S
B

)
6

D
1

4
7

D
1

3
8

D
1

2
9

D
1

1
1

0

D
1

0
1

1

D
9

1
2

D
8

1
3

D
7

1
5

D
6

1
6

D
5

1
7

D
4

1
8

D
3

1
9

D
2

2
0

D
1

2
1

D
0

2
2

B
Y

T
E

2
3

R
/C

2
4

C
S

2
5

B
U

S
Y

2
6

V
A

N
A

2
7

V
D

IG
2

8

U
2

L
T

C
1
6
0
5
-2

C
G

C
1
9

4
n
7

C
2
0

1
0
u
F

C
2
1

1
0
u
F

A
n
S

T

V
C

C

A
n
E

N
A

n
B

S
Y

+
5

V

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

H
IG

H
C

2
2
u
2

C
3

2
u
2

R
1

2
0
0
R

 1
%

L
1

4
.7

u
H

V
C

C
+

5
V

R
2

3
3
K

2
 1

%

3
.6

8
6
4
M

H
z

C
7

1
0
0
n

IN
IT

D
O

N
E

D
IN

C
C

L
K

D
1

B
A

S
2
1
6

P
R

O
G

1 2 3 4 5

J1 H
E

A
D

E
R

 5

D
IN

C
C

L
K

V
C

C

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
3

M
A

X
4
8
7

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
4

M
A

X
4
8
7

P
R

O
G

V
C

C

IN
IT

V
C

C

C
C

L
K

D
O

N
E

D
IN

3
.6

8
6
4
M

H
z

R
X

D

T
X

D

T
X

D
E

N

C
8

1
0
0
n

C
9

1
0
0
n

R
X

D
+

R
X

D
-

T
X

D
-

T
X

D
+

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
n
B

S
Y

A
n
E

N
A

n
S

T
H

IG
H

A
N

E
N

3
A

N
A

0
A

N
A

1

+
3

V
3

A
0

1
E

N
2

V-
3

N
O

1
4

N
O

2
5

N
O

3
6

N
O

4
7

C
O

M
8

N
O

8
9

N
O

7
1

0
N

O
6

1
1

N
O

5
1

2

V+
13

GND
14

A
2

1
5

A
1

1
6

U
6

M
A

X
3
0
8
C

S
E

+
1

5
V

-1
5

V

C
1
0

1
0
0
n

C
1
1

1
0
0
n

-1
5

V
+

1
5

V

+
3

V
3

C
1
2

1
0
0
n

C
1
3

1
0
0
n

C
1
4

1
0
0
n

C
1
5

1
0
0
n

+
3

V
3

IN
8

O
U

T
1

GND
3

GND
6

GND
7

GND
2

U
8

L
M

7
8
L

0
5
A

C
M

C
4

2
u
2

V
C

C

C
1
6

1
0
0
n

+
9

V

IN
8

O
U

T
1

GND
3

GND
6

GND
7

GND
2

U
9

L
M

7
8
L

1
5
A

C
M

O
U

T
1

IN
2

IN
3

IN
6

IN
7

GND
5

U
1
0

L
M

7
9
L

1
5
A

C
M

C
1
7

1
0
0
n

C
1
8

1
0
0
n

+
2

0
V

-2
0

V

C
2
2

4
u
7
 3

5
V

C
2
3

4
u
7
 3

5
V

-1
5

V

+
1

5
V

C
2
4

2
2
u
 1

6
V

E
N

1

G
4

V
8

O
U

T
5

U
1
1

3
.6

8
6
4
M

H
z

V
C

C

A
N

A
1

A
N

E
N

1

V
C

C

R
3

1
K

R
4

1
K

R
5

1
2
0
R

V
C

C

C
L

K
E

N

C
L

K
E

N

R
0

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

U
5

M
A

X
4
8
7

E
V

E
N

T
V

C
C

E
V

E
N

T
+

E
V

E
N

T
-

A
N

E
N

1
A

N
E

N
2

T
X

D
R

X
D

T
X

D
E

N
E

V
E

N
T

GND
1

G
C

L
K

1
-I

/O
2

I/
O

3

I/
O

/T
D

I
4

I/
O

/T
C

K
5

I/
O

/T
M

S
6

I/
O

7

I/
O

8

I/
O

9

I/
O

1
0

VCC
12

I/
O

1
3

I/
O

1
4

I/
O

1
5

I/
O

1
6

GND
11

I/
O

1
8

I/
O

1
9

I/
O

2
0

G
C

L
K

2
-I

/O
2

1

GND
23

M
0

2
4

VCC
25

P
W

R
D

N
2

6

G
C

L
K

3
-I

/O
2

7

H
D

C
-I

/O
2

8

I/
O

2
9

L
D

C
-I

/O
3

0

I/
O

3
1

I/
O

3
2

I/
O

3
3

I/
O

3
4

I/
O

3
5

IN
IT

-I
/O

3
6

GND
38

I/
O

3
9

I/
O

4
0

I/
O

4
1

I/
O

4
2

I/
O

4
3

I/
O

4
4

I/
O

4
5

I/
O

4
6

I/
O

4
7

G
C

L
K

4
-I

/O
4

8

GND
49

D
O

N
E

5
0

VCC
51

P
R

O
G

5
2

I/
O

5
3

G
C

L
K

5
-I

/O
5

4

I/
O

5
5

I/
O

5
6

I/
O

5
7

I/
O

5
8

I/
O

5
9

I/
O

6
0

I/
O

6
1

I/
O

6
2

VCC
63

GND
64

I/
O

6
5

I/
O

6
6

I/
O

6
7

I/
O

6
8

I/
O

6
9

I/
O

7
0

I/
O

7
1

D
IN

-I
/O

7
2

G
C

L
K

6
-I

/O
7

3

C
C

L
K

7
4

VCC
75

T
D

O
-O

7
6

GND
77

I/
O

7
8

G
C

L
K

7
-I

/O
7

9

I/
O

8
0

VCC
89

I/
O

8
1

I/
O

8
2

I/
O

8
4

I/
O

8
5

I/
O

8
6

I/
O

8
7

GND
88

I/
O

9
0

I/
O

9
1

I/
O

9
2

I/
O

9
3

I/
O

9
4

I/
O

9
5

I/
O

9
6

I/
O

9
7

G
C

L
K

8
-I

/O
9

9

M
1

2
2

VCC
37

I/
O

8
3

I/
O

9
8

I/
O

1
7

VCC
100

U
1
2

X
C

S
2
0
X

L
V

Q
1
0
0

+
3

V
3

GND
5

VCC
8

2

D
1

C
E

4

R
S

T
3

S
E

R
E

N
7

C
E

O
6

U
1
3

A
T

1
7
L

V
2
5
6

A
0

1
E

N
2

V-
3

N
O

1
4

N
O

2
5

N
O

3
6

N
O

4
7

C
O

M
8

N
O

8
9

N
O

7
1

0
N

O
6

1
1

N
O

5
1

2

V+
13

GND
14

A
2

1
5

A
1

1
6

U
7

M
A

X
3
0
8
C

S
E

+
1

5
V

-1
5

V

A
N

A
0

A
N

A
2

A
N

E
N

2
A

N
A

0
A

N
A

1
A

N
A

2

2

6

1

7 4

8

3

U
1
4

O
P

-1
7
7

+
1

5
V

-1
5

V

1 1
4

2 1
5

3 1
6

4 1
7

5 1
8

6 1
9

7 2
0

8 2
1

9 2
2

1
0

2
3

1
1

2
4

1
2

2
5

1
3

J2 D
B

2
5
/M

A
N

A
2

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Y
8

Y
9

Y
1
0

Y
1
1

K
IL

L
_
L

8
6

Y
IG

_
S

T
B

L
O

C
K

S
B

S
E

L

D
E

T
_
B

IA
S

I_
C

O
IL

R
E

F
_
D

E
T

IF
_
D

E
T

V
_
D

R
IV

E
S

P
A

R
E

_
1

S
P

A
R

E
_
2

S
P

A
R

E
_
3

A

P
1
A

S
M

P
L

2
0
M

B

P
1
B

S
M

P
L

2
0
M

C

P
1
C

S
M

P
L

2
0
M

D

P
1
D

S
M

P
L

2
0
M

E

P
1
E

S
M

P
L

2
0
M

F

P
1
F

S
M

P
L

2
0
M

H

P
1
G

S
M

P
L

2
0
M

J

P
1
H

S
M

P
L

2
0
M

K

P
1
I

S
M

P
L

2
0
M

L

P
1
J

S
M

P
L

2
0
M

M

P
1
K

S
M

P
L

2
0
M

N

P
1
L

S
M

P
L

2
0
M

P

P
1
M

S
M

P
L

2
0
M

R

P
1
N

S
M

P
L

2
0
M

S

P
1
O

S
M

P
L

2
0
M

T

P
1
P

S
M

P
L

2
0
M

U

P
1
Q

S
M

P
L

2
0
M

V

P
1
R

S
M

P
L

2
0
M

W

P
1
S

S
M

P
L

2
0
M

X

P
1
T

S
M

P
L

2
0
M

+
2

0
V

-2
0

V

+
9

V

T
X

D
+

T
X

D
-

R
X

D
+

R
X

D
-

E
V

E
N

T
+

E
V

E
N

T
-

S
P

A
R

E
4

S
P

A
R

E
5

S
P

A
R

E
6

D
IG

S
P

1

D
IG

S
P

2

D
IG

S
P

3

D
IG

S
P

4

S
P

A
R

E
4

S
P

A
R

E
5

S
P

A
R

E
6

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Y
8

Y
9

Y
1
0

Y
1
1

K
IL

L
_
L

8
6

Y
IG

_
S

T
B

L
O

C
K

S
B

S
E

L
D

IG
S

P
1

D
IG

S
P

2
D

IG
S

P
3

D
IG

S
P

4
1

2

3
4

5
6

7
8

9
1

0

JP
1

H
E

A
D

E
R

 5
X

2

D
2

L
E

D

D
3

L
E

D

D
4

L
E

D

D
5

L
E

D

+
3

V
3

R
P

1

4
K

7

S
E

R
E

N
P

R
O

G
D

IN
IN

IT

+
3

V
3

S
E

R
E

N

R
P

2

2
2
0
R

Figure E.1: MM local oscillator interface schematic

APPENDIX E: LO Interface Schematics 113

1
2

3
4

5
6

7
8

ABCD

8
7

6
5

4
3

2
1

D C B A

R
e
vi

s
io

n
:

S
h

e
e
t:

1

T
o
ta

l:

1

D
ra

w
n

:

C
h

e
c
k
e
d

:

A
p

p
ro

ve
d

:

A
s
s
e
m

b
ly

 D
ra

w
in

g
 N

o
.:

S
c
h

e
m

a
ti
c
 F

ile
n

a
m

e
:

K
:\
M

M
C

o
n
v
e
rs

io
n
In

te
rf

a
c
e
\x

ili
n
x
.s

c
h

In
te

rf
a
c
e
 C

o
m

m
s

O
ri
g

in
a
to

r:

Is
s
u

e
d

:

A
T

N
F

 R
E

C
E

IV
E

R
 G

R
O

U
P

D
a
te

:

1
5
H

z

C
lo

c
k
 D

iv
id

e
r

F
8

M

F
5

0
0

K

F
1

6
K

F
4

9
0

F
1

5

U
?

O
S

C
4

1
6
K

H
z

X
IL

IN
X

P
A

R
T

T
Y

P
E

=
X

C
S

2
0
X

L
V

Q
1
0
0
-4

U
?

V
C

C
U

?

G
N

D

01

P
4
8

IP
A

D

R
S

T

C
L

K

R
X

D

D
S

A
<

0
>

D
S

A
<

1
>

D
S

A
<

2
>

D
S

A
<

3
>

D
S

A
<

4
>

D
A

T
A

<
0

>

D
A

T
A

<
1

>

D
A

T
A

<
2

>

D
A

T
A

<
3

>

D
A

T
A

<
4

>

D
A

T
A

<
5

>

D
A

T
A

<
6

>

D
A

T
A

<
7

>

D
A

T
A

<
8

>

D
A

T
A

<
9

>

D
A

T
A

<
1

0
>

D
A

T
A

<
1

1
>

D
A

T
A

<
1

2
>

D
A

T
A

<
1

3
>

D
A

T
A

<
1

4
>

D
A

T
A

<
1

5
>

A
D

D
<

0
>

A
D

D
<

1
>

A
D

D
<

2
>

A
D

D
<

3
>

A
D

D
<

4
>

A
D

D
<

5
>

A
D

D
<

6
>

A
D

D
<

7
>

A
D

D
<

8
>

W
R

S
T

B

T
X

D

T
X

D
_

E
N

B
A

U
D

<
0

>

B
A

U
D

<
1

>

B
A

U
D

<
2

>

B
A

U
D

<
3

>

P
A

R

E
R

R

U
1
7

D
A

T
A

S
E

T

C
L

K

0 0 1 0 0 1 1 0 1

W
R

S
T

B

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

U
?

B
U

F
G

3
_
6
8
6
4
M

H
Z

0

D
a
ta

s
e
t

S
ta

te
 M

a
c
h

in
e

3
8
4
0
0
 B

P
S

D
S

A
 =

 4

P
A

R

E
R

R

B
R

X
D

P
5
4

O
P

A
D

P
5
5

IP
A

D

U
?

O
B

U
F

U
?

IB
U

F

D
IF

1

D
IF

2

P
5
6

O
P

A
D

U
?

O
B

U
F

D
IF

D
IR

1

T
X

D
_
E

N

P
3
2

O
P

A
D

P
3
4

O
P

A
D

1
5
H

z

B
R

X
D

C
E

C C
L

R

Q
0

Q
1

C
E

O

T
C

U
?

C
B

2
C

E

U
?

IN
V

1
5
H

z

S
T

B

C
E

C C
L

R

Q
0

Q
1

C
E

O

T
C

U
?

C
B

2
C

E

U
?

IN
V

U
?

IN
V

I0I1I2I3

O
0

O
1

O
2

O
3

U
?

O
B

U
F

4

S
ta

tu
s
 L

E
D

 D
ri

v
e
rs

P
3
3

O
P

A
D

P
3
5

O
P

A
D

L
E

D
1

L
E

D
2

L
E

D
3

L
E

D
4

1
5
H

z

P
A

R

C
E

C C
L

R

Q
0

Q
1

C
E

O

T
C

U
?

C
B

2
C

E

U
?

IN
V

1
5
H

z

E
R

R

C
E

C C
L

R

Q
0

Q
1

C
E

O

T
C

U
?

C
B

2
C

E

U
?

IN
V

P
5
3

O
P

A
D

U
?

O
B

U
F

1

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1

0

D
1

1

D
1

2

D
1

3

D
1

4

D
1

5

C
E

C C
L

R

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1

1

Q
1

2

Q
1

3

Q
1

4

Q
1

5

U
?

F
D

1
6
C

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I1
0

I1
1

I1
2

I1
3

I1
4

I1
5

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
1

0

O
1

1

O
1

2

O
1

3

O
1

4

O
1

5

U
?

O
B

U
F

1
6

P
5
8

O
P

A
D

P
5
9

O
P

A
D

P
6
0

O
P

A
D

P
6
1

O
P

A
D

P
6
2

O
P

A
D

P
6
5

O
P

A
D

P
6
6

O
P

A
D

P
6
7

O
P

A
D

P
6
8

O
P

A
D

P
6
9

O
P

A
D

P
7
0

O
P

A
D

P
7
1

O
P

A
D

0

Y
IG

E
N

W
C

K

U
?

A
N

D
2

U
?

O
B

U
F

P
7
3

O
P

A
D

W
C

K

Y
IG

E
N

I0 I1 I2 I3 I4 I5 I6 I7

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

U
?

IB
U

F
8

P
1
4

IP
A

D
P

1
5

IP
A

D
P

1
6

IP
A

D
P

1
7

IP
A

D
P

1
8

IP
A

D
P

1
9

IP
A

D
P

2
0

IP
A

D
P

2
1

IP
A

D

U
?

O
B

U
F

U
?

O
B

U
F

U
?

O
B

U
F

P
1
0

O
P

A
D

P
9

O
P

A
D

P
1
3

O
P

A
D

3
_
6
8
6
4
M

H
Z

S
T

B

P
O

R
S

T

P
8

IP
A

D

U
8

IB
U

F

A
N

E
N

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
n
E

N

A
n
S

T

H
IG

H

A
n
B

S
Y

A
D

C
 S

e
q

u
e
n

c
in

g

R
S

T

C
L

K

A
D

C
R

Q

D
A

T
A

<
0

>

D
A

T
A

<
1

>

D
A

T
A

<
2

>

D
A

T
A

<
3

>

D
A

T
A

<
4

>

D
A

T
A

<
5

>

D
A

T
A

<
6

>

D
A

T
A

<
7

>

D
A

T
A

<
8

>

D
A

T
A

<
9

>

D
A

T
A

<
1

0
>

D
A

T
A

<
1

1
>

D
A

T
A

<
1

2
>

D
A

T
A

<
1

3
>

D
A

T
A

<
1

4
>

D
A

T
A

<
1

5
>

A
D

C
D

A
T

A
<

0
>

A
D

C
D

A
T

A
<

1
>

A
D

C
D

A
T

A
<

2
>

A
D

C
D

A
T

A
<

3
>

A
D

C
D

A
T

A
<

4
>

A
D

C
D

A
T

A
<

5
>

A
D

C
D

A
T

A
<

6
>

A
D

C
D

A
T

A
<

7
>

A
D

C
E

N

A
N

S
T

S
T

B

A
N

H
IG

H

B
U

S
Y

U
?

A
D

C
R

D
1
6

A
0

A
1

A
2

A
3

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1

0

D
1

1

D
1

2

D
1

3

D
1

4

D
1

5

U
?

D
4
_
1
6
E

A
0

A
1

A
2

A
3

R
ea

d
5

U
?

A
N

D
2
B

1

W
R

A
0

A
1

A
2

A
3

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1

0

D
1

1

D
1

2

D
1

3

D
1

4

D
1

5

U
?

D
4
_
1
6
E

A
0

A
1

A
2

A
3

A
d

d
re

s
s
 D

e
c
o

d
e
r

U
?

IN
V

S
T

B
W

C
K

W
ri

te
2

W
ri

te
3

R
ea

d
1
0

A
0

A
1

A
2

A
3

E

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1

0

D
1

1

D
1

2

D
1

3

D
1

4

D
1

5

U
?

D
4
_
1
6
E

A
5

A
6

A
7

A
8

W
R

0
-1

5

1
6
-3

1

3
2
-4

7

4
8
-6

3

6
4
-9

5

9
6
-1

1
1

1
1
2
-1

2
7

1
2
8
-1

4
3

A
N

E
N

U
?

A
N

D
2
B

2

A
4

U
?

A
N

D
2

W
R

R
ea

d
6

A
8

0
-1

5

0
-1

5

Y
IG

R
D

R
ea

d
1

R
ea

d
2

R
ea

d
3

R
ea

d
4

R
ea

d
7

R
ea

d
8

R
ea

d
9

R
ea

d
1
1

R
ea

d
1
2

R
ea

d
1
3

R
ea

d
1
4

R
ea

d
1
5

Y
IG

E
N

W
ri

te
1

W
ri

te
4

W
ri

te
5

W
ri

te
6

W
ri

te
7

W
ri

te
8

W
ri

te
9

W
ri

te
1
0

W
ri

te
1
1

W
ri

te
1
2

W
ri

te
1
3

W
ri

te
1
4

W
ri

te
1
5

E

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

U
?

B
U

F
E

1
6

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

Y
IG

R
D

U
?

O
B

U
F

U
?

O
B

U
F

U
?

O
B

U
F

P
5

O
P

A
D

P
6

O
P

A
D

P
7

O
P

A
D

P
3

O
P

A
D

P
2

O
P

A
D

U
?

O
B

U
F

U
?

O
B

U
F

A
0

A
1

A
2

U
?

A
N

D
5
B

4

A
4

A
5

A
6

A
7

A
N

E
N

U
?

A
N

D
2
B

1

U
?

A
N

D
2

A
3

A
3

Figure E.2: MM local oscillator interface Xilinx schematic

114 APPENDIX E: LO Interface Schematics

Appendix F

Fibre Mux Schematics

115

116 APPENDIX F: Fibre Mux Schematics

1 2 3 4

A

B

C

D

E

F

G

H

4321

H

G

F

E

D

C

B

A

Revision: Sheet:

1.0 1

Total:

1

Drawn:

Checked:

Approved:

Assembly Drawing No.:

Schematic Filename:

K:\Fibre Modems\fibre mux.sch

Dataset Fibre MuxOriginator:

Issued:

ATNF RECEIVER GROUP
Date:

Error : csiro.bmp file not found.

R0
1

RE
2

DE
3

DI
4

GND
5

A
6

B
7

VCC
8

U1

MAX487

R0
1

RE
2

DE
3

DI
4

GND
5

A
6

B
7

VCC
8

U2

MAX487

VCC

VCC

C1

100n

C2

100n

TXD+

TXD-

RXD+

RXD-

1

3

2

4

U3

HFD3023

1

2

3

4

U7

HFE4074

VCC

1

3

2

4

U4

HFD3023

1

2

3

4

U8

HFE4074

1

3

2

4

U5

HFD3023

1

2

3

4

U9

HFE4074

1

3

2

4

U6

HFD3023

1

2

3

4

U10

HFE4074

VCC

VCC

VCC

VCC

VCC

VCC

1

2

3

U11A

DM74LS00

Q1

BC848

R1

10K

R7
180R

VCC

R8

180R

R9

180R

R10

180R

R2
10K

VCC

4

5

6

U11B

DM74LS00

VCC

R3
10K

VCC

Q2
BC848

Q3
BC848

Q4
BC848

R4
10K

R5
10K

R6
10K

Vin
1

G
N

D
2

Vout
3

U12
LM7805

VCC

C7
10u 16V

C8
10u 16V

C3
100n

C4
100n

C5
100n

C6
100n

VCC

VCC

VCC

VCC

1

2

3

4

5

6

J1

CON6

+9V

+9V

Figure F.1: MM fibre mux schematic

Appendix G

Labwindows/CVI Source Code

G.1 Dataset Test Panel

G.1.1 dataset serv.c

/***/
/* */
/* Labwindows Dataset Bus TCP/IP Server. */
/* */
/* Revision 0.1 by Suzy Jackson <sjackson@atnf.csiro.au> */
/* */
/* Allows computers to access a dataset bus using TCP/IP. */
/* */
/* Protocol is: command dataset.address [data] */
/* command is either "set" or "show" */
/* dataset is an ascii string containing the dataset name */
/* (eg "c13_ds") */
/* address is an ascii integer containing the register address */
/* data is an ascii integer containing data to be loaded. */
/* */
/* The server responds with either */
/* <OK> command dataset.address [data] */
/* or */
/* <ERR> command dataset address [data] returned error */
/* where error is the error number returned by the relevant */
/* dataset comms routine. */
/* */
/***/

#include <rs232.h>
#include <utility.h>
#include <ansi_c.h>
#include <cvirte.h> /* Needed if linking in external compiler */
#include <userint.h>
#include <tcpsupp.h>
#include "dset_96.h" /* Dataset serial comms routines */
#include "dataset_server.h"

117

118 APPENDIX G: Labwindows/CVI Source Code

#define CONTROL 0xC0000000
#define MONITOR 0x40000000

#define ESC 0x1b
#define SYN 0x16
#define NAK 0x15
#define ACK 0x06
#define BEL 0x07

#define PARITY 1 /* odd */
#define DATA_BITS 8
#define STOP_BITS 1
#define IN_QUEUE_SIZE 64
#define OUT_QUEUE_SIZE 64

#define MSGHD 71
#define CONTROL 0xC0000000
#define MONITOR 0x40000000
#define ACK 0x06

struct loboss_msg
{

char msgHD;
unsigned char msglen;
char msg[256];

};

int port, port_open, panelHandle, TCPHandle;

void int_to_bytes(int num, char *byte)
{
short i;
for (i=0;i<=3;i++)
{

byte[i]=num;
num=(num >> 8);

}
}

unsigned int bytes_to_int(char *byte, int num_bytes)
{
short i;
unsigned int num = byte[0];
unsigned char ch;
for (i=1;i<num_bytes;i++)
{

num=(num << 8);
ch = byte[i];
num += ch;

APPENDIX G: Labwindows/CVI Source Code 119

}
return(num);

}

int Initialise_Dataset(int ds_address, int port, int baud)
{
/* Error codes: 0 success

-1 comms error
*/

int data;
extern int port_open;
if (!port_open)
{
if (OpenComConfig (port, "", baud, PARITY, DATA_BITS,

STOP_BITS, IN_QUEUE_SIZE, OUT_QUEUE_SIZE))
return(-1);
port_open=1;

}
FlushOutQ (port);
FlushInQ (port);
SetComTime (port, 0.5);
return(0);

}

void Close_All_Datasets(port)
{

CloseCom(port);
}

int ReadResponse(int* response) /* TESTED OK */
{

extern int port;
char read_buff[3], flag, txferstring[40];
ComRd (port, &flag, 1);
if (rs232err)
{
SetCtrlVal (panelHandle, PANEL_HISTORY, GetRS232ErrorString (rs232err));
SetCtrlVal (panelHandle, PANEL_HISTORY, " ");
return(-1);

}
sprintf (txferstring, "%X ", flag&0xff);
SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);
ComRd (port, read_buff, 2);
sprintf (txferstring, "%X %X ", read_buff[0]&0xff, read_buff[1]&0xff);
SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);
if (flag == ACK || flag == BEL)
{
if (read_buff[0] == ESC)
{

Decode(read_buff);
ComRd(port, &read_buff[1],1);
sprintf (txferstring, "%X ", read_buff[1]&0xff);

120 APPENDIX G: Labwindows/CVI Source Code

SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);
}
if (read_buff[1] == ESC)
{

ComRd(port, &read_buff[2], 1);
sprintf (txferstring, "%X ", read_buff[2]&0xff);
SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);
Decode(&read_buff[1]);

}
*response = bytes_to_int(read_buff, 2);
while (GetInQLen (port) >0) {

ComRd (port, read_buff, 1);
sprintf (txferstring, "%X ", read_buff[0]&0xff);
SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);

}
return(0);

}
else {

while (GetInQLen (port) >0) {
ComRd (port, read_buff, 1);
sprintf (txferstring, "%X ", read_buff[0]);
SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);

}
return (-2);

}
}

void Decode(char* esc_seq) /* TESTED OK */
{
switch (esc_seq[1])
{

case ’0’:
esc_seq[0] = ESC;
break;

case ’1’:
esc_seq[0] = SYN;
break;

case ’2’:
esc_seq[0] = ACK;
break;

case ’3’:
esc_seq[0] = BEL;
break;

case ’4’:
esc_seq[0] = NAK;
break;

default:
break;

}
}

int SendMessage(int message) /* TESTED OK */

APPENDIX G: Labwindows/CVI Source Code 121

{
extern int port;
char write_buff[10], byte[4], current;
int index = 0, count = 3;
write_buff[index++] = SYN;
int_to_bytes(message, byte);
while(index < 10)
{
if (count >= 0)
{

switch (current = byte[count--])
{

case ESC:
write_buff[index++] = ESC;
write_buff[index++] = ’0’;
break;

case SYN:
write_buff[index++] = ESC;
write_buff[index++] = ’1’;
break;

default:
write_buff[index++] = current;
break;

}
}
else

write_buff[index++] = NULL;
}
if (ComWrt(port, write_buff, 10) != 10) return(-1);
else return(0);

}

int Dataset_Out(int ds_address, int control_point, int data_out)
{

/* Error codes: 0 success
-1 comms error
-2 dataset error
-3 invalid control point
-4 invalid data out

*/
int message, err;
char reply[3], txferstring[40];
if (control_point < 0 || control_point > 511) return(-3);
if (data_out < 0 || data_out > 0xffff) return(-4);
message = CONTROL + (ds_address << 25) + (control_point << 16)

+ data_out;
if (err = SendMessage(message)) return(err);
ComRd(port, reply, 3);
if (rs232err)
{
SetCtrlVal (panelHandle, PANEL_HISTORY,

122 APPENDIX G: Labwindows/CVI Source Code

GetRS232ErrorString (rs232err));
SetCtrlVal (panelHandle, PANEL_HISTORY, " ");

}
else {

sprintf (txferstring, "%X %X %X ", reply[0]&0xff, reply[1]&0xff,
reply[2]&0xff);

SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);
}
while (GetInQLen (port) >0) {

ComRd (port, reply, 1);
sprintf (txferstring, "%X ", reply[0]&0xff);
SetCtrlVal (panelHandle, PANEL_HISTORY, txferstring);

}
if (reply[0] != ACK) return(-2);
else return(0);

}

int Dataset_In(int ds_address, int monitor_point, int *data_in)
{

/* Error codes: 0 success
-1 comms error
-2 dataset error
-3 invalid control point

*/
int message, err, response;
if (monitor_point < 0 || monitor_point > 511) return(-3);
message = MONITOR + (ds_address << 25) + (monitor_point << 16);
if (err = SendMessage(message)) return(err);
if (err = ReadResponse(&response)) return(err);
*data_in = (response & 0xffff);
return(0);

}

int dsetlookup (char *dataset)

/* Provides a quick conversion from dataset name to dataset number. */

{
if (!strcmp (dataset, "c11_ds")) return 10;
if (!strcmp (dataset, "c13_ds")) return 16;
if (!strcmp (dataset, "c31_ds")) return 17;
if (!strcmp (dataset, "c41_ds")) return 18;
/* we don’t understand the name, so let’s assume it’s a decimal */
return atoi(dataset);

}

int CVICALLBACK TCPServerCallback (unsigned handle, int event, int error,
void *callbackData)

APPENDIX G: Labwindows/CVI Source Code 123

{
char command [12], dataset [12], reqstring [256];
char *temp;
int err = 0, dataSize = 256, address, data;
struct loboss_msg buffer;
TCPHandle = handle;
switch (event) {
case TCP_CONNECT:

TCPHandle = handle;
SetCtrlVal (panelHandle, PANEL_HISTORY,

"New connection established\n");
break;

case TCP_DATAREADY:
if ((dataSize = ServerTCPRead(TCPHandle, &buffer, dataSize, 1000))

== -kTCP_ConnectionClosed) {
SetCtrlVal (panelHandle, PANEL_HISTORY,

"TCP Read Error - connection closed\n");
}
if (buffer.msglen>2) {

/* extract the message from the buffer */
memcpy (reqstring, &buffer.msg, buffer.msglen-2);
/* append a NULL so that it looks like a string */
reqstring [buffer.msglen-2]=0;
/* remove the . between the dataset name and register address */
if (temp=strchr(reqstring,’.’)) *temp = ’ ’;
/* suck out the gist of the message */
sscanf (reqstring,"%s %s %d %d", command, dataset, &address,

&data);
if (!strcmp (command,"show")) {

if (err = Dataset_In (dsetlookup (dataset), address, &data)) {
sprintf (buffer.msg, "<ERR> show %s.%d returned %d\n",

dataset, address, err);
}
else {

sprintf (buffer.msg, "<OK> show %s.%d %d", dataset, address,
data);

}
}
else if (!strcmp (command, "set")) {

if (err = Dataset_Out (dsetlookup (dataset), address, data)) {
sprintf (buffer.msg, "<ERR> set %s.%d %d returned %d",

dataset, address, data, err);
}
else {

sprintf (buffer.msg, "<OK> set %s.%d %d", dataset, address,
data);

}
}
else {

sprintf (buffer.msg, "<ERR> %s is not a valid message",
reqstring);

err = -1;

124 APPENDIX G: Labwindows/CVI Source Code

}
buffer.msglen = strlen (buffer.msg) + 2;
buffer.msgHD = MSGHD;
SetCtrlVal (panelHandle, PANEL_HISTORY, &buffer.msg);
SetCtrlVal (panelHandle, PANEL_HISTORY, "\n");
if (ServerTCPWrite (TCPHandle, &buffer, buffer.msglen, 1000)<0) {

SetCtrlVal (panelHandle, PANEL_HISTORY,
"TCP Write Error - connection closed\n");

}
}
sprintf (buffer.msg, "<done> %d",err);
buffer.msglen = strlen (buffer.msg) + 2;
buffer.msgHD = MSGHD;
if (ServerTCPWrite (TCPHandle, &buffer, buffer.msglen, 1000)<0) {

SetCtrlVal (panelHandle, PANEL_HISTORY,
"TCP Write Error - connection closed\n");

}
break;

case TCP_DISCONNECT:
SetCtrlVal (panelHandle, PANEL_HISTORY,

"Connection closed by client\n");
break;

}
return (0);

}

int main (int argc, char *argv[])
{
char miscstring [11];
int errval;
if (InitCVIRTE (0, argv, 0) == 0)

return -1; /* out of memory */
if ((panelHandle = LoadPanel (0, "dataset_server.uir", PANEL)) < 0)

return -1;
DisplayPanel (panelHandle);
RunUserInterface ();
return 0;

}

int CVICALLBACK Shutdown (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
QuitUserInterface (0);
break;

}
return 0;

}

APPENDIX G: Labwindows/CVI Source Code 125

void CVICALLBACK Menu (int menuBar, int menuItem, void *callbackData,
int panel)

{
int err;
char errstring [80], hoststring [256], miscstring [11];
switch (menuItem) {
case MENU_FILE_QUIT:

QuitUserInterface (0);
break;

case MENU_SETUP_COM1:
case MENU_SETUP_COM2:

SetMenuBarAttribute (menuBar, MENU_SETUP_COM1, ATTR_CHECKED, 0);
SetMenuBarAttribute (menuBar, MENU_SETUP_COM2, ATTR_CHECKED, 0);
SetMenuBarAttribute (menuBar, menuItem, ATTR_CHECKED, 1);
if (menuItem == MENU_SETUP_COM1) port = 1;
else port = 2;
PromptPopup ("Enter Baudrate",

"Please type the baudrate being used by the datasets.\n
(generally either 4800 or 38400)",
miscstring, 10);

if ((err = Initialise_Dataset(0, port, atoi(miscstring)))== -1) {
/* Note we don’t care if the dataset doesn’t respond */
SetCtrlVal (panelHandle, PANEL_HISTORY,

"Unable to open com port.\n");
SetMenuBarAttribute (menuBar, menuItem, ATTR_CHECKED, 0);

}
break;

case MENU_SETUP_TCP:
PromptPopup ("Enter Port Number", "Please enter the port number\n

0 for no TCP", miscstring, 10);
SetWaitCursor (1);
if (atoi(miscstring)) {

SetCtrlVal (panelHandle, PANEL_HISTORY, "Registering server: ");
if (RegisterTCPServer(atoi(miscstring), TCPServerCallback, NULL)<0)
{

SetCtrlVal (panelHandle, PANEL_HISTORY, "Failed\n");
}
else SetCtrlVal (panelHandle, PANEL_HISTORY, "Successful\n");

}
SetWaitCursor (0);
break;

default:
break;

}
}

int CVICALLBACK send (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
int address, data, dataset, err;
struct loboss_msg buffer;

126 APPENDIX G: Labwindows/CVI Source Code

switch (event) {
case EVENT_COMMIT:

GetCtrlVal (panelHandle, PANEL_dsa, &dataset);
GetCtrlVal (panelHandle, PANEL_fa, &address);
GetCtrlVal (panelHandle, PANEL_data, &data);
if (err = Dataset_Out (dataset, address, data)) {

sprintf (buffer.msg, "<ERR> set %d.%d %d returned %d",
dataset, address, data, err);

}
else {

sprintf (buffer.msg, "<OK> set %d.%d %d", dataset, address, data);
}
SetCtrlVal (panelHandle, PANEL_HISTORY, &buffer.msg[0]);
SetCtrlVal (panelHandle, PANEL_HISTORY, "\n");
break;

}
return 0;

}

int CVICALLBACK recv (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
int address, data, dataset, err;
struct loboss_msg buffer;
switch (event) {

case EVENT_COMMIT:
GetCtrlVal (panelHandle, PANEL_dsa, &dataset);
GetCtrlVal (panelHandle, PANEL_fa, &address);
if (err = Dataset_In (dataset, address, &data)) {

sprintf (buffer.msg, "<ERR> show %d.%d returned %d",
dataset, address, err);

}
else {

sprintf (buffer.msg, "<OK> show %d.%d %d", dataset, address, data);
}
SetCtrlVal (panelHandle, PANEL_data, data);
SetCtrlVal (panelHandle, PANEL_HISTORY, &buffer.msg[0]);
SetCtrlVal (panelHandle, PANEL_HISTORY, "\n");
break;

}
return 0;

}

int CVICALLBACK clear (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
FlushOutQ (port);
FlushInQ (port);
break;

}

APPENDIX G: Labwindows/CVI Source Code 127

return 0;
}

G.2 Receiver Monitor Panel

G.2.1 mm rx.c

/**/
/* CSIRO Australia Telescope */
/* Receiver Group */
/* */
/* Title: Millimetre Receiver Monitor Program V0.1 */
/* File: mm_rx.c */
/* Description: main routines. */
/* Author: Suzy Jackson */
/* Last Modified: 22-6-01 */
/**/

/***
Includes

***/

#include <rs232.h>
#include <cvirte.h>
#include <stdio.h>
#include <string.h>
#include <userint.h>
#include <utility.h>
#include "panel.h" /* GUI defines */
#include "Dset_96.h"

#define CONTROL 0xC0000000
#define MONITOR 0x40000000

#define ESC 0x1b
#define SYN 0x16
#define NAK 0x15
#define ACK 0x06
#define BEL 0x07

int CVICALLBACK GetDataThread (void *functionData);

/***
Global variables (not inc GUI ones)

***/

int port = 1, baud = 115200, port_open = 0; /* useful info about the datasets */
int panelHandle, aboutHandle, menuHandle;
int MonitorGo = 1; /* Used to stop monitor process */

128 APPENDIX G: Labwindows/CVI Source Code

/***
Main Routine

***/

int main (int argc, char *argv[])

{
if (InitCVIRTE (0, argv, 0) == 0) return -1;
/* load all panels into memory */
if ((panelHandle = LoadPanel (0, "panel.uir", PANEL)) < 0)

return -1;
if ((aboutHandle = LoadPanel (0, "panel.uir", ABOUT)) < 0)

return -1;
if ((menuHandle = LoadMenuBar (panelHandle, "panel.uir", MENU)) < 0)

return -1;
/* insert the compile date in the about_date string */
#ifdef __STDC__
SetCtrlVal (aboutHandle, ABOUT_DATE, __DATE__);
#endif
/* display the introductory panel */
DisplayPanel (aboutHandle);
/* open the port */
{ if (OpenComConfig (port, "", baud, 1, 8, 1, 64, 64))

return(-1);
port_open=1;

}
FlushOutQ (port);
FlushInQ (port);
/* start the data acquisition thread */
CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE,

GetDataThread, NULL, NULL);
Delay (2.0);
/* now hide the about screen and bring up the main panel */
HidePanel (aboutHandle);
DisplayPanel (panelHandle);
/* run the GUI, so people can control things. */
RunUserInterface ();

}

int Dataset_Out(int ds_address, int control_point, int data_out)
{

/* Error codes: 0 success
-1 comms error
-2 dataset error
-3 invalid control point
-4 invalid data out

*/
int message, err;
char reply[3];

APPENDIX G: Labwindows/CVI Source Code 129

if (control_point < 0 || control_point > 511) return(-3);
if (data_out < 0 || data_out > 0xffff) return(-4);
message = CONTROL + (ds_address << 25) + (control_point << 16) + data_out;
if (err = SendMessage(message)) return(err);
ComRd(port, reply, 3);
if (reply[0] != ACK) return(-2);
else return(0);

}

int Dataset_In(int ds_address, int monitor_point, int *data_in)
{

/* Error codes: 0 success
-1 comms error
-2 dataset error
-3 invalid control point

*/
int message, err, response;

if (monitor_point < 0 || monitor_point > 511) return(-3);
message = MONITOR + (ds_address << 25) + (monitor_point << 16);
if (err = SendMessage(message)) return(err);
if (err = ReadResponse(&response)) return(err);
*data_in = (response & 0xffff);
return(0);

}

/***
GetDataThread

Reads the analog monitor points, and
displays the result on the panel meters.

***/

int CVICALLBACK GetDataThread (void *functionData)

{
int regdata, err, i, band;
int dsplkup[48] = { PANEL_VDS_1A, PANEL_VDS_2A, PANEL_VDS_3A, PANEL_VDS_4A,

PANEL_VGS_1A, PANEL_VGS_2A, PANEL_VGS_3A, PANEL_VGS_4A,
PANEL_IDS_1A, PANEL_IDS_2A, PANEL_IDS_3A, PANEL_IDS_4A,
PANEL_VDS_1B, PANEL_VDS_2B, PANEL_VDS_3B, PANEL_VDS_4B,
PANEL_VGS_1B, PANEL_VGS_2B, PANEL_VGS_3B, PANEL_VGS_4B,
PANEL_IDS_1B, PANEL_IDS_2B, PANEL_IDS_3B, PANEL_IDS_4B,
PANEL_VDS_5A, PANEL_VDS_6A, PANEL_VDS_7A, PANEL_VDS_8A,
PANEL_VGS_5A, PANEL_VGS_6A, PANEL_VGS_7A, PANEL_VGS_8A,
PANEL_IDS_5A, PANEL_IDS_6A, PANEL_IDS_7A, PANEL_IDS_8A,
PANEL_VDS_5B, PANEL_VDS_6B, PANEL_VDS_7B, PANEL_VDS_8B,
PANEL_VGS_5B, PANEL_VGS_6B, PANEL_VGS_7B, PANEL_VGS_8B,
PANEL_IDS_5B, PANEL_IDS_6B, PANEL_IDS_7B, PANEL_IDS_8B };

int wlkup[48] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

130 APPENDIX G: Labwindows/CVI Source Code

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47 };

int klkup[24] = { 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71 };

int qlkup[24] = { 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95 };

int dewlkup[26] = { 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121 };

int dewdlkup[26] = { PANEL_32V, PANEL_20V, PANEL__20V, PANEL_9V, PANEL_15R1,
PANEL__15R1, PANEL_5R1, PANEL_15R2, PANEL__15R2,
PANEL_5R2, PANEL_15R3, PANEL__15R3, PANEL_5R3,
PANEL_15R4, PANEL__15R4, PANEL_5R4, PANEL_20K1,
PANEL_70K1, PANEL_20K2, PANEL_70K2, PANEL_SUP1,
PANEL_RET1, PANEL_SUP2, PANEL_RET2, PANEL_VAC1,
PANEL_VAC2 };

for (;;) {
GetCtrlVal (panelHandle, PANEL_MON_LNA, &band);
switch (band) {

case 0:
for (i=0;i<24;i++) {

if (MonitorGo) {
Dataset_In (0, klkup[i], ®data);
SetCtrlVal (panelHandle, dsplkup[i],

((double) (short) regdata)/8192);
}

}
break;

case 1:
for (i=0;i<24;i++) {

if (MonitorGo) {
Dataset_In (0, qlkup[i], ®data);
SetCtrlVal (panelHandle, dsplkup[i],

((double) (short) regdata)/8192);
}

}
break;

default:
for (i=0;i<48;i++) {

if (MonitorGo) {
Dataset_In (0, wlkup[i], ®data);
SetCtrlVal (panelHandle, dsplkup[i],

((double) (short) regdata)/8192);
}

}
break;

}
for (i=0;i<26;i++) {

if (MonitorGo) {
Dataset_In (0, dewlkup[i], ®data);
SetCtrlVal (panelHandle, dewdlkup[i],

APPENDIX G: Labwindows/CVI Source Code 131

((double) (short) regdata)/8192);
}

}
if (MonitorGo) {

Dataset_In (1, 7, ®data);
SetCtrlVal (panelHandle, PANEL_KA, (regdata&0x01));
SetCtrlVal (panelHandle, PANEL_KB, (regdata&0x02));
SetCtrlVal (panelHandle, PANEL_QA, (regdata&0x04));
SetCtrlVal (panelHandle, PANEL_QB, (regdata&0x08));
SetCtrlVal (panelHandle, PANEL_WA1, (regdata&0x10));
SetCtrlVal (panelHandle, PANEL_WA2, (regdata&0x20));
SetCtrlVal (panelHandle, PANEL_WB1, (regdata&0x40));
SetCtrlVal (panelHandle, PANEL_WB2, (regdata&0x80));

}
}

}

/***
Shutdown

Called when the user hits the quit button.
***/

int CVICALLBACK Shutdown (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
QuitUserInterface (0);
break;

}
return 0;

}

/***
band_change

Called when the user changes the displayed band.
***/

int CVICALLBACK band_change (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
int band, i;
int lookup[24] = { PANEL_VDS_5A, PANEL_VDS_6A, PANEL_VDS_7A, PANEL_VDS_8A,

PANEL_VGS_5A, PANEL_VGS_6A, PANEL_VGS_7A, PANEL_VGS_8A,
PANEL_IDS_5A, PANEL_IDS_6A, PANEL_IDS_7A, PANEL_IDS_8A,
PANEL_VDS_5B, PANEL_VDS_6B, PANEL_VDS_7B, PANEL_VDS_8B,
PANEL_VGS_5B, PANEL_VGS_6B, PANEL_VGS_7B, PANEL_VGS_8B,
PANEL_IDS_5B, PANEL_IDS_6B, PANEL_IDS_7B, PANEL_IDS_8B };

132 APPENDIX G: Labwindows/CVI Source Code

switch (event) {
case EVENT_COMMIT:

GetCtrlVal (panel, control, &band);
for (i=0;i<24;i++)

SetCtrlAttribute (panel, lookup[i], ATTR_DIMMED, (band!=2));
break;

}
return 0;

}

/***
Menu

Code to make sense of the pulldown menus.
***/

void CVICALLBACK Menu(int menubar, int menuItem, void *callbackData, int panel)

{
char about_string [200];
int temp;
switch (menuItem) {

case MENU_FILE_QUIT:
QuitUserInterface(0);
break;

case MENU_HELP_ABOUT:
DisplayPanel (aboutHandle);
break;

}
}

/***
CLOSE_ABOUT

Shuts down the about window.
***/

int CVICALLBACK CLOSE_ABOUT (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
HidePanel (aboutHandle);
break;

}
return 0;

}

APPENDIX G: Labwindows/CVI Source Code 133

/***
control

Called when the user changes a control bit.
***/

int CVICALLBACK control (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:

break;
}
return 0;

}

G.3 Water Vapour Radiometer Server

G.3.1 wvr.c

/**/
/* CSIRO Australia Telescope */
/* Receiver Group */
/* */
/* Title: Water Vapour Radiometer Program V1.0 */
/* File: wvr.c */
/* Description: main routines. */
/* Author: Suzy Jackson */
/* Last Modified: 14-8-2000 */
/**/

/***
Includes

***/

#include <tcpsupp.h>
#include <cvirte.h>
#include <stdio.h>
#include <string.h>
#include <userint.h>
#include <utility.h>
#include "panel.h"
#include <rs232.h>
#include "dset_96.h"
#include <easyio.h>
#include <ansi_c.h>

134 APPENDIX G: Labwindows/CVI Source Code

/***
Hardware Defines - these values need to reflect hardware reality

***/

#define MSGHD 71

#define MONITOR 0x40000000

#define DAQ_Device 1
#define DAQ_MAX 10
#define DAQ_MIN -10
#define Noise_Port "0"
#define Noise_Line 0

#define DSA 2
#define PORT 1
#define BAUD 38400

/***
Structures

***/

/* a structure to store values we’ve read while we’re waiting to write them
to a file */

typedef struct List {
double data[16];
char time[9];
double sec;
struct List *next;

} list;

struct msg_type
{

char msgHD;
unsigned char msglen;
char msg[512];

};

/***
Prototypes

***/

list* Add_To_List (list *head, char *time, double sec, double *data);
int Dataset_In(int ds_address, int monitor_point, int *data_in);
int CVICALLBACK GetDataThread (void *functionData);

/***
Global variables

APPENDIX G: Labwindows/CVI Source Code 135

***/

int port = PORT, port_open, panelHandle, menuHandle, aboutHandle,
file_len = 99999999, list_len = 0;

FILE *logfile;
char logbase [MAX_PATHNAME_LEN] = {"wvr_data"};
char logpath [MAX_PATHNAME_LEN];
list *head = NULL;
int TCPHandle, TCPConnect = 0, getdataflag = 0;

/***
TCPServerCallback

Called when data is waiting on the TCP stack.
***/

int CVICALLBACK TCPServerCallback (unsigned handle, int event, int error,
void *callbackData)

{
char inbuf[512], outbuf[300], command[80], path[256];
int file_size, update_rate, device, dataSize = 512, i, intvalue;
float floatvalue;
list * curr;
struct msg_type bufdata;

switch (event) {
case TCP_CONNECT:

TCPHandle = handle;
SetCtrlVal (panelHandle, PANEL_HISTORY,

"New connection established\n");
TCPConnect = 1;
break;

case TCP_DATAREADY:
if ((dataSize = ServerTCPRead(TCPHandle, &bufdata,

dataSize, 1000)) == -kTCP_ConnectionClosed) {
SetCtrlVal (panelHandle, PANEL_HISTORY,

"TCP Read Error - connection closed\n");
TCPConnect = 0;

}
/* extract the message from the buffer */
memcpy (inbuf, &bufdata.msg, bufdata.msglen-2);
/* append a NULL so it looks like a string */
inbuf[bufdata.msglen-2]=0;
sscanf (inbuf,"%s ", command);
if (!strcmp (command,"INTERVAL")) {

sscanf (inbuf,"%s %f", command, &floatvalue);
SetCtrlVal (panelHandle, PANEL_INTERVAL, floatvalue);
sprintf (bufdata.msg, "%s <done>\n",inbuf);

}
else if (!strcmp (command, "FILE_SIZE")) {

sscanf (inbuf,"%s %d", command, &intvalue);

136 APPENDIX G: Labwindows/CVI Source Code

SetCtrlVal (panelHandle, PANEL_FILE_SIZE, intvalue);
sprintf (bufdata.msg, "%s <done>\n",inbuf);

}
else if (!strcmp (command, "DEVICE")) {

sscanf (inbuf,"%s %d", command, &intvalue);
SetCtrlVal (panelHandle, PANEL_DEVICE, intvalue);
sprintf (bufdata.msg, "%s <done>\n",inbuf);
DEVICE (panelHandle, PANEL_DEVICE, EVENT_COMMIT,

NULL, NULL, NULL);

}
else if (!strcmp (command, "TIMESOURCE")) {

sscanf (inbuf,"%s %d", command, &intvalue);
SetCtrlVal (panelHandle, PANEL_TIMESOURCE, intvalue);
sprintf (bufdata.msg, "%s <done>\n",inbuf);

}
else if (!strcmp (command, "GO")) {

sscanf (inbuf,"%s %d", command, &intvalue);
SetCtrlVal (panelHandle, PANEL_GO, intvalue);
sprintf (bufdata.msg, "%s <done>\n",inbuf);
START (panelHandle, PANEL_GO, EVENT_COMMIT,

NULL, NULL, NULL);
}
else if (!strcmp (command, "AVERAGE")) {

sscanf (inbuf,"%s %d", command, &intvalue);
SetCtrlVal (panelHandle, PANEL_AVERAGE, intvalue);
sprintf (bufdata.msg, "%s <done>\n",inbuf);

}
else if (!strcmp (command, "LOGBASE")) {

sscanf (inbuf,"%s %s", command, logbase);
sprintf (bufdata.msg, "%s <done>\n",inbuf);

}
else {

sprintf (bufdata.msg, "<ERR> invalid message\n");
}
SetCtrlVal (panelHandle, PANEL_HISTORY, bufdata.msg);
bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (ServerTCPWrite (TCPHandle, &bufdata, bufdata.msglen,

1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
break;

case TCP_DISCONNECT:
SetCtrlVal (panelHandle, PANEL_HISTORY,

"Connection closed by client\n");
TCPConnect = 0;
break;

}
return (0);

}

APPENDIX G: Labwindows/CVI Source Code 137

/***
Main Routine

***/

int main (int argc, char *argv[])

{
list *curr;
if (InitCVIRTE (0, argv, 0) == 0) return -1;
/* load all panels into memory */
if ((panelHandle = LoadPanel (0, "panel.uir", PANEL)) < 0)

return -1;
if ((aboutHandle = LoadPanel (0, "panel.uir", ABOUT)) < 0)

return -1;
if ((menuHandle = LoadMenuBar (panelHandle, "panel.uir", MENU)) < 0)

return -1;
/* Set the compile date */
#ifdef __STDC__

SetCtrlVal (aboutHandle, ABOUT_DATE, __DATE__);
#endif
/* start the data acquisition thread */
CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE, GetDataThread,

NULL, NULL);
/* bring up the main panel */
DisplayPanel (panelHandle);
SetCtrlVal (panelHandle, PANEL_HISTORY,

"Registering TCP Server on port 4321: ");
if (RegisterTCPServer(4321, TCPServerCallback, NULL)<0)

SetCtrlVal (panelHandle, PANEL_HISTORY, "Failed\n");
else SetCtrlVal (panelHandle, PANEL_HISTORY, "Successful\n");
/* run the GUI, so people can control things. */
RunUserInterface ();
/* we’re leaving, so close up behind us,

and free any memory we’ve malloc’d */
while (head) {

curr = head->next;
free (head);
head = curr;

}
return 0;

}

/***
Shutdown

Called when the user hits the quit button.
***/

int CVICALLBACK Shutdown (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

138 APPENDIX G: Labwindows/CVI Source Code

{
switch (event) {

case EVENT_COMMIT:
QuitUserInterface (0);
break;

}
return 0;

}

/***
Menu

Code to make sense of the pulldown menus.
***/

void CVICALLBACK Menu(int menubar, int menuItem, void *callbackData,
int panel)

{
switch (menuItem) {

case MENU_FILE_LOGFILE:
FileSelectPopup ("","*.csv","*.csv","Log File",VAL_OK_BUTTON,

0,0,1,1,logbase);
/* we need to remove the .csv, as this is added later, along with

the current date and time, when the file is first created. */
if (strchr(logbase,’.’)) *strchr(logbase,’.’)=NULL;
break;

case MENU_FILE_QUIT:
QuitUserInterface (0);
break;

case MENU_HELP_ABOUT:
DisplayPanel (aboutHandle);
break;

}
}

/***
Dateset_In

Provides input from a dataset without address translation.
***/

int Dataset_In(int ds_address, int monitor_point, int *data_in)
{

/* Error codes: 0 success
-1 comms error
-2 dataset error
-3 invalid control point

*/
int message, err, response;

APPENDIX G: Labwindows/CVI Source Code 139

if (monitor_point < 0 || monitor_point > 511) return(-3);
message = MONITOR + (ds_address << 25) + (monitor_point << 16);
if (err = SendMessage(message)) return(err);
if (err = ReadResponse(&response)) return(err);
*data_in = (response & 0xffff);
return(0);

}

/***
Add_To_List

Adds the current data to a linked list, checks whether we have
enough data to archive, and if we do writes the list out to a file
before trashing it.

***/

list* Add_To_List (list *head, char *time, double sec, double *data)

{
list *new, *curr;
static list *last;
int i, hours, minutes, seconds, file_size, dump, n;
char *date, linebuf [256];
struct msg_type bufdata;
GetCtrlVal (panelHandle, PANEL_FILE_SIZE, &file_size);
/* create new list item */
new = malloc(sizeof(list));
/* copy values into item */
strcpy (new->time, time);
for (i=0;i<16;i++) new->data[i]=data[i];
new->sec=sec;
/* give item a null pointer */
new->next = NULL;
/* is this the first time? yes - point head to item */
if (!head) {

head = new;
list_len = 0;

}
/* no - point last item to item */
else last->next = new;
last = new;
list_len ++;
/* do we have enough items to offload to a file? */
if (list_len%10 == 0) {

/* first check if it’s time for a new file */
if (file_len>=file_size) {

/* Generate the new filename, and write the header */
date = DateStr ();
sscanf (head->time,"%d:%d:%d",&hours,&minutes,&seconds);
sprintf (logpath, "%s-%s-%02d-%02d-%02d.csv", logbase, date,

hours, minutes, seconds);
if (!(logfile = fopen (logpath, "w"))) {

140 APPENDIX G: Labwindows/CVI Source Code

sprintf (bufdata.msg,"ERROR - Unable to open %s\n",logpath);
SetCtrlVal (panelHandle, PANEL_HISTORY, bufdata.msg);
bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (TCPConnect) {

if (ServerTCPWrite (TCPHandle, &bufdata,
bufdata.msglen, 1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
}
else MessagePopup ("ERROR", "Cannot open file");

}
else {

file_len = 0;
fprintf (logfile,"Water Vapour Radiometer Logfile\n");
fclose (logfile);
sprintf (bufdata.msg,"Opened %s\n",logpath);
SetCtrlVal (panelHandle, PANEL_HISTORY, bufdata.msg);
bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (TCPConnect) {

if (ServerTCPWrite (TCPHandle, &bufdata,
bufdata.msglen, 1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
}
ClearStripChart (panelHandle, PANEL_INPUTS);

}
}
if (logfile = fopen (logpath, "a")) {
/* Now offload the buffer to the file. Note that if we’re unable to

open the file, we don’t worry about it, but just try again next
time. This way, we’re able to cope with ppl accessing the file
we’re writing to with no loss of data. */
for (dump=20;dump&&head;dump--) {

/* we offload up to 20 elements at a time, or the whole list,
whichever is less. This way, we don’t risk missing the
next read because we’re busy dumping a large number of
records, but are still able to "catch up" reasonably
quickly, if we haven’t been able to access the file for a
while. */

fprintf (logfile, "%s, %f, ",head->time, head->sec);
for (i=0;i<16;i++) fprintf (logfile, "%f, ",head->data[i]);
fprintf (logfile, "\n");
curr = head->next;
free (head);
head = curr;
list_len --;
file_len ++;

}
/* close up behind us, so that others can access the file */
fclose (logfile);

APPENDIX G: Labwindows/CVI Source Code 141

sprintf (bufdata.msg,"Logged %d samples\n",file_len);
GetNumTextBoxLines(panelHandle, PANEL_HISTORY, &n);
if (n>1) {

GetTextBoxLine(panelHandle, PANEL_HISTORY, n-2, linebuf);
if (!strncmp(bufdata.msg,"Logged",6)

&& !strncmp(linebuf,"Logged",6))
DeleteTextBoxLine(panelHandle,PANEL_HISTORY,n-2);

SetCtrlVal (panelHandle, PANEL_HISTORY, bufdata.msg);
}
bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (TCPConnect) {

if (ServerTCPWrite (TCPHandle, &bufdata,
bufdata.msglen, 1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
}

}
}
return head;

}

/***
TIMER

Called when it’s time to log a sample.
***/

int CVICALLBACK TIMER (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
getdataflag = 1;
return (0);

}

/***
GetDataThread

Runs continuously as a separate thread. When getdataflag is set by
main thread, it clears the flag, then gets a sample, and adds it to
the list, as well as displaying it on the chart. Is able to deal
with National Instruments DAQ cards (8 channel, 16 bit) as well as
the AT WVR interface (16 channel, 24 bit).

***/

int CVICALLBACK GetDataThread (void *functionData)

{
struct msg_type bufdata;
char *curr_time;
char errstring[40];
int i, j, intdata, loworder, device, average, timesource, noise_interval,

142 APPENDIX G: Labwindows/CVI Source Code

noise_en, err;
short temp[8196], status = 0;
short chanvector[8] = {0,1,2,3,4,5,6,7};
short gainvector[8] = {1,1,1,1,1,1,1,1};
double data[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
double curr_sec;
for (;;) {

if (getdataflag) {
getdataflag = 0;
GetCtrlVal (panelHandle, PANEL_DEVICE, &device);
GetCtrlVal (panelHandle, PANEL_AVERAGE, &average);
GetCtrlVal (panelHandle, PANEL_NOISE, &noise_interval);
GetCtrlVal (panelHandle, PANEL_NOISE_EN, &noise_en);
curr_time = TimeStr();
curr_sec = Timer();
if (device) {

/* set the DAQ card process up */
// SCAN_Setup (DAQ_Device, 8, chanvector,gainvector);

/* SCAN_Start hangs if we give it 1 scan. For both cases,
we take samples at 20 us intervals (50KHz), and scan each
set at 200 us intervals, but for the single scan case, we
actually take 2 scans and ignore the second. */

// if (average==1)
// SCAN_Start (DAQ_Device, &temp[0], 16, 1, 20, 1, 200);
// else
// SCAN_Start (DAQ_Device, &temp[0],
// average*8, 1, 20, 1, 200);

/* wait for the process to finish */
// while (!status) DAQ_Check (DAQ_Device, &status, &i);

/* average the result */
// for (j=0;j<average;j++)
// for (i=0;i<8;i++)
// data[i]+=temp[i+j*8]/(3276.8*average);
// WriteToDigitalLine (DAQ_Device, Noise_Port, Noise_Line, 8,
// 0, !(noise_en &&
// ((file_len+list_len)%noise_interval==0)));

}
else {

/* The AT Dataset interface uses the WVR interface card, with
24 bit ADC. The ADC samples 16 inputs, but at a refresh
rate of only 6.25Hz. Thus no averaging is employed (nor
should it be needed) */

for (i=0;i<16;i++) {
if (err = Dataset_In (DSA, i, &intdata)){

data[i]=-11;
sprintf (bufdata.msg, "Dataset_In returned %d\n", err);
SetCtrlVal (panelHandle, PANEL_HISTORY, bufdata.msg);
if (TCPConnect) {

bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (ServerTCPWrite (TCPHandle, &bufdata,

bufdata.msglen, 1000)<0) {

APPENDIX G: Labwindows/CVI Source Code 143

MessagePopup ("ERROR", "TCP write error.");
}

}
}
else {

if (err = Dataset_In (DSA, 16, &loworder)) {
data[i]=-11;
sprintf (bufdata.msg,

"Dataset_In returned %d\n", err);
SetCtrlVal (panelHandle, PANEL_HISTORY,

bufdata.msg);
if (TCPConnect) {

bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (ServerTCPWrite (TCPHandle, &bufdata,

bufdata.msglen, 1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
}

}
else {

intdata = (intdata * 256)
+ (loworder & 0x00ff)+1;

if (intdata > 8388352) intdata -= 16777216;
/* scale to volts */
data[i]=(double)intdata/(838860.8);

}
}

}
}
PlotStripChart (panelHandle, PANEL_INPUTS, &data[0], 16, 0, 0,

VAL_DOUBLE);
head = Add_To_List (head, curr_time, curr_sec, &data[0]);

}
}
return 0;

}

/***
CLOSE_ABOUT

Shuts down the about window.
***/

int CVICALLBACK CLOSE_ABOUT (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
HidePanel (aboutHandle);
break;

}

144 APPENDIX G: Labwindows/CVI Source Code

return 0;
}

/***
CHART_SCALE

Changes the scaling for the stripchart.
***/

int CVICALLBACK CHART_SCALE (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
double min, max, temp;
switch (event) {

case EVENT_COMMIT:
GetCtrlVal (panel, PANEL_CHART_MIN, &min);
GetCtrlVal (panel, PANEL_CHART_MAX, &max);
if (min > max) {

SetCtrlVal (panel, PANEL_CHART_MIN, max);
SetCtrlVal (panel, PANEL_CHART_MAX, min);
temp = min;
min = max;
max = temp;

}
SetAxisScalingMode (panel, PANEL_INPUTS, VAL_LEFT_YAXIS,

VAL_MANUAL, min, max);
break;

}
return 0;

}

/***
DEVICE

Input device change.
***/

int CVICALLBACK DEVICE (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
int device;
switch (event) {

case EVENT_COMMIT:
GetCtrlVal (panel, PANEL_DEVICE, &device);
if (device == 0) {

SetCtrlVal (panel, PANEL_AVERAGE, 1);
SetCtrlAttribute (panel, PANEL_AVERAGE, ATTR_DIMMED, 1);
SetCtrlAttribute (panel, PANEL_INTERVAL, ATTR_MIN_VALUE, 0.2);

}
else {

SetCtrlAttribute (panel, PANEL_AVERAGE, ATTR_DIMMED, 0);
SetCtrlAttribute (panel, PANEL_INTERVAL, ATTR_MIN_VALUE, 0.05);

APPENDIX G: Labwindows/CVI Source Code 145

}
break;

}
return 0;

}

/***
START

Initialises inputs when we start recording.
***/

int CVICALLBACK START (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
int device, go, i;
double interval;
list *curr;
struct msg_type bufdata;

switch (event) {
case EVENT_COMMIT:

GetCtrlVal (panel, PANEL_DEVICE, &device);
GetCtrlVal (panel, PANEL_GO, &go);
GetCtrlVal (panelHandle, PANEL_INTERVAL, &interval);
SetCtrlAttribute (panelHandle, PANEL_TIMER, ATTR_INTERVAL,

interval);
SetCtrlAttribute (panelHandle, PANEL_TIMER, ATTR_ENABLED, go);
if (!device && go) {

Initialise_Dataset(DSA, port, BAUD);
SetComTime (port, 0.5);

}
if (!go) {

if (logfile = fopen (logpath, "a")) {
/* Offload the buffer to the file. */
while (head) {

fprintf (logfile, "%s, %f, ",head->time,
head->sec);

for (i=0;i<8;i++)
fprintf (logfile, "%f, ",head->data[i]);

fprintf (logfile, "\n");
curr = head->next;
free (head);
head = curr;

}
/* close up behind us. */
fclose (logfile);
/* re-initialise file and list lengths */
file_len = 99999999;
list_len = 0;
SetCtrlVal (panelHandle, PANEL_HISTORY,

"Data Collection Stopped\n");

146 APPENDIX G: Labwindows/CVI Source Code

sprintf (bufdata.msg,"Data Collection Stopped\n");
}

}
else {

SetCtrlVal (panelHandle, PANEL_HISTORY,
"Data Collection Started\n");

sprintf (bufdata.msg,"Data Collection Started\n");
}
if (TCPConnect) {

bufdata.msglen = strlen (bufdata.msg) + 2;
bufdata.msgHD = MSGHD;
if (ServerTCPWrite (TCPHandle, &bufdata,

bufdata.msglen, 1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
}
break;

}
return 0;

}

G.4 Water Vapour Radiometer Client

G.4.1 wvr client.c

/***

Water Vapour Radiometer Client

Allows us to remotely control the water vapour radiometer data
collection process..

Version: 0.1
Commenced: 5 Sep 2000
Last Revised: 5 Sep 2000
Author: Suzy Jackson <sjackson@atnf.csiro.au>

***/

#include <ansi_c.h>
#include <cvirte.h>
#include <userint.h>
#include <tcpsupp.h>
#include "client.h"

#define MSGHD 71

/***
A data structure to hold request/control data.

***/

APPENDIX G: Labwindows/CVI Source Code 147

struct msg_type
{

char msgHD;
unsigned char msglen;
char msg[512];

};

/***
Prototypes.

***/

int CVICALLBACK Shutdown (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2);

int CVICALLBACK SEND (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2);

int CVICALLBACK TCPClientCallback (unsigned handle, int event, int error,
void *callbackData);

int CVICALLBACK CONNECT (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2);

void CVICALLBACK Menu (int menuBar, int menuItem, void *callbackData,
int panel);

int CVICALLBACK CLOSE_ABOUT (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2);

/***
Global Variables.

***/

int panelHandle, aboutHandle, menuHandle, TCPHandle;

/***
Main program.

***/

int main (int argc, char *argv[])
{

char miscstring [300];

if (InitCVIRTE (0, argv, 0) == 0)
/* Needed if linking in external compiler */
return -1; /* out of memory */

if ((panelHandle = LoadPanel (0, "client.uir", PANEL)) < 0)
return -1;

if ((aboutHandle = LoadPanel (0, "client.uir", ABOUT)) < 0)
return -1;

if ((menuHandle = LoadMenuBar (panelHandle, "client.uir", MENU)) < 0)
return -1;

if (argc == 2) {

148 APPENDIX G: Labwindows/CVI Source Code

SetWaitCursor (1);
if (ConnectToTCPServer (&TCPHandle, 4321, argv[1],

TCPClientCallback, NULL, 5000) <0) {
MessagePopup ("ERROR", "Unable to connect to server.");
SetCtrlVal (panelHandle, PANEL_CONNECT, 0);

}
else {

SetCtrlVal (panelHandle, PANEL_HISTORY, "Connected to ");
SetCtrlVal (panelHandle, PANEL_HISTORY, argv[1]);
SetCtrlVal (panelHandle, PANEL_HISTORY, "\n");
sprintf (miscstring,"WVR Client - %s",argv[1]);
SetPanelAttribute (panelHandle, ATTR_TITLE, miscstring);
SetCtrlVal (panelHandle, PANEL_CONNECT, 1);

}
SetWaitCursor (0);

}
DisplayPanel (panelHandle);
RunUserInterface ();
return 0;

}

/***
Shutdown - called when user hits the quit button.

***/

int CVICALLBACK Shutdown (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
QuitUserInterface (0);
break;

}
return 0;

}

/***
Send - sends data to the server.

***/

int CVICALLBACK SEND (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
int intdata;
double doubledata;
struct msg_type message;

switch (event) {

APPENDIX G: Labwindows/CVI Source Code 149

case EVENT_COMMIT:
switch (control) {

case PANEL_INTERVAL:
GetCtrlVal (panelHandle, PANEL_INTERVAL, &doubledata);
sprintf (message.msg,"INTERVAL %f",doubledata);
break;

case PANEL_FILE_SIZE:
GetCtrlVal (panelHandle, PANEL_FILE_SIZE, &intdata);
sprintf (message.msg,"FILE_SIZE %d",intdata);
break;

case PANEL_DEVICE:
GetCtrlVal (panelHandle, PANEL_DEVICE, &intdata);
if (intdata == 0) {

SetCtrlVal (panel, PANEL_AVERAGE, 1);
SetCtrlAttribute (panel, PANEL_AVERAGE,

ATTR_DIMMED, 1);
SetCtrlAttribute (panel, PANEL_INTERVAL,

ATTR_MIN_VALUE, 0.2);
}
else {

SetCtrlAttribute (panel, PANEL_AVERAGE,
ATTR_DIMMED, 0);

SetCtrlAttribute (panel, PANEL_INTERVAL,
ATTR_MIN_VALUE, 0.05);

}
sprintf (message.msg,"DEVICE %d",intdata);
break;

case PANEL_TIMESOURCE:
GetCtrlVal (panelHandle, PANEL_TIMESOURCE,

&intdata);
sprintf (message.msg,"TIMESOURCE %d",intdata);
break;

case PANEL_GO:
GetCtrlVal (panelHandle, PANEL_GO, &intdata);
sprintf (message.msg,"GO %d",intdata);
break;

case PANEL_AVERAGE:
GetCtrlVal (panelHandle, PANEL_AVERAGE, &intdata);
sprintf (message.msg,"AVERAGE %d",intdata);
break;

}
/* create the message */
message.msglen = strlen (message.msg) + 2;
message.msgHD = MSGHD;
/* send it */
if (ClientTCPWrite (TCPHandle, &message, message.msglen,

1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
break;

}
return 0;

150 APPENDIX G: Labwindows/CVI Source Code

}

/***
TCPClientCallback - deciphers server responses.

***/

int CVICALLBACK TCPClientCallback (unsigned handle, int event, int error,
void *callbackData)

{
struct msg_type bufdata;
int dataSize = 512, n;
char *temp, inbuf[256], linebuf[256];

TCPHandle = handle;
switch (event) {

case TCP_DATAREADY:
if ((dataSize = ClientTCPRead(TCPHandle, &bufdata, dataSize,

1000)) == -kTCP_ConnectionClosed) {
SetCtrlVal (panelHandle, PANEL_HISTORY,

"TCP Read Error - connection closed\n");
}
/* extract the message from the buffer */
memcpy (inbuf, &bufdata.msg, bufdata.msglen-2);
/* append a NULL so it looks like a string */
inbuf[bufdata.msglen-2]=0;
GetNumTextBoxLines(panelHandle, PANEL_HISTORY, &n);
if (n>1) {

GetTextBoxLine(panelHandle, PANEL_HISTORY, n-2, linebuf);
if (!strncmp(inbuf,"Logged",6) && !strncmp(linebuf,"Logged",6))

DeleteTextBoxLine(panelHandle,PANEL_HISTORY,n-2);
SetCtrlVal (panelHandle, PANEL_HISTORY, inbuf);

}
if (n>100) DeleteTextBoxLine(panelHandle, PANEL_HISTORY, 0);
break;

case TCP_DISCONNECT:
MessagePopup ("NOTE", "Server has closed connection.");
SetCtrlVal (panelHandle, PANEL_CONNECT, 0);
break;

}
return (0);

}

/***
Connect - manages connections to the server.

***/

int CVICALLBACK CONNECT (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

APPENDIX G: Labwindows/CVI Source Code 151

{
int connect;
char hoststring [256], miscstring [300];
switch (event) {

case EVENT_COMMIT:
GetCtrlVal (panelHandle, PANEL_CONNECT, &connect);
if (connect == 1) {

PromptPopup("Enter Host Name",
"Please type the name of the host machine.\n(eg wvrca03-cj)",
hoststring, 255);

SetWaitCursor (1);
if (ConnectToTCPServer (&TCPHandle, 4321, hoststring,

TCPClientCallback, NULL, 5000) <0) {
MessagePopup ("ERROR", "Unable to connect to server.");
SetCtrlVal (panelHandle, PANEL_CONNECT, 0);

}
else {

SetCtrlVal (panelHandle, PANEL_HISTORY, "Connected to ");
SetCtrlVal (panelHandle, PANEL_HISTORY, hoststring);
SetCtrlVal (panelHandle, PANEL_HISTORY, "\n");
sprintf (miscstring,"WVR Client - %s",hoststring);
SetPanelAttribute (panelHandle, ATTR_TITLE, miscstring);

}
SetWaitCursor (0);

}
else {

DisconnectFromTCPServer (TCPHandle);
SetPanelAttribute (panelHandle, ATTR_TITLE, "WVR Client");
SetCtrlVal (panelHandle, PANEL_HISTORY,

"Disconnected from server\n");
}

}
return 0;

}

/***
Menu - deals with the pulldown menus.

***/

void CVICALLBACK Menu (int menuBar, int menuItem, void *callbackData,
int panel)

{
int err;
char logbase [512];
struct msg_type message;
switch (menuItem) {

case MENU_FILE_QUIT:
QuitUserInterface (0);
break;

case MENU_FILE_LOGFILE:

152 APPENDIX G: Labwindows/CVI Source Code

PromptPopup("Enter Filename",
"Please enter the filename prefix.\nThe system will
append a date and time field to this for each file.\n
eg: wvrdata-ca03", logbase, 256);

sprintf (message.msg,"LOGBASE %s",logbase);
message.msglen = strlen (message.msg) + 2;
message.msgHD = MSGHD;
if (ClientTCPWrite (TCPHandle, &message, message.msglen,

1000)<0) {
MessagePopup ("ERROR", "TCP write error.");

}
break;

case MENU_HELP_ABOUT:
DisplayPanel (aboutHandle);

default:
break;

}
}

/***
CLOSE_ABOUT

Shuts down the about window.
***/

int CVICALLBACK CLOSE_ABOUT (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event) {

case EVENT_COMMIT:
HidePanel (aboutHandle);
break;

}
return 0;

}

