

A noise budget for SKA imaging applications

Stefan J. Wijnholds e-mail: wijnholds@astron.nl

SKA Calibration & Imaging Workshop Kiama (Australia), 3-7 March 2014

Dynamic range is not a suitable figure of merit

Effective noise

- thermal noise
- classical source confusion noise
- calibration noise (estimation noise + penalty for corrections)
- calibration artefacts
- far sidelobe confusion noise (FSCN)
- psf sidelobe confusion noise (PSCN)

Last 5 factors can be mitigated by **design-for-calibratability**

Definition used: 10 psfs / source to avoid cluttering of sources

LFAA can do a relatively shallow all-sky continuum survey

EoR/CD needs frequency independent psf

f (MHz)	<i>A/T</i> (m²/K)	<i>τ</i> (h)
50	144	15.9
100	760	1.0
160z	1070	2.1
220	1060	4.7

Calibration noise – part 1 Wijnholds & Van der Veen, IEEE JSTSP, Oct 2008 Wijnholds, Ph.D. thesis, Mar 2010

calibration extracts information that can't be used for imaging

- simple view
 - each data point is an equation
 - each calibration parameter is an unknown
 - each image parameters is an unknown
- rigorous approach: Cramer-Rao bound analysis

- partitioned FIM: $\mathbf{F} = \begin{bmatrix} \mathbf{F}_{im} & \mathbf{F}_{im, cal} \\ \mathbf{F}_{cal, im} & \mathbf{F}_{cal} \end{bmatrix}$ - invert to get CRB: $\mathbf{CRB} = \mathbf{F}^{-1} = \begin{bmatrix} [\mathbf{F}^{-1}]_{im} & [\mathbf{F}^{-1}]_{im, cal} \\ [\mathbf{F}^{-1}]_{cal, im} & [\mathbf{F}^{-1}]_{cal} \end{bmatrix}$

- use Schur complement: $[\mathbf{F}^{-1}]_{im} = (\mathbf{F}_{im} - \mathbf{F}_{cal,im} \mathbf{F}_{cal}^{-1} \mathbf{F}_{cal,im})^{-1}$

Calibration noise – part 2

Propagation of calibration errors

- Errors in calibration cause beam perturbations
- Assumed imaging process $\sigma = \mathbf{M}(\theta) \mathbf{vec}(\mathbf{R})$
- Rigorous error propagation to image

$$\operatorname{cov}(\boldsymbol{\sigma}) = \left(\frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\theta}^{\mathsf{T}}}\right) \operatorname{cov}(\boldsymbol{\theta}) \left(\frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\theta}^{\mathsf{T}}}\right)^{\mathsf{T}}$$

- Apply this to single point source test image to see impact on beam
- Can be done for AA and PAF beams

AST(RON

Example: cal. errors in AA beam Wijnholds, Grainge & Nijboer, SKA-low, Sep. 2011 AST(RON

Impact station calibration errors on LOFAR LBA station beam

Assumptions:

- LBA_OUTER, CS302
- calibration on 4-9-'11, 15:00 UTC at 50 MHz
- 1 s, 195 kHz
- calibration errors derived from CRB
- SNR_{Cas} = 0.01
- constraint on peak

- Calibration processes may produce artefacts
 - biased solutions (self-cal bias)
 - ghost sources (talk by Trienko Grobler on Tuesday)
- Many different and often subtle causes
 - weights based on data (Wijnholds & v.d. Veen, TSP, 2009)
 - incomplete sky model
- Calibration processes need very careful checking
 - algorithms should be unbiased
 - algorithms should be statistically efficient

Source statistics: density of sources increases as we image deeper

- sky is sparse in (relatively) bright sources
- sky is filled with $\sim 10^{11}$ weak sources (# of galaxies in universe)
- example:
 - LFAA @ 110 MHz after 1000 hours / 1 MHz integration
 - to reach 100 σ level, 2.10⁵ need subtraction
 - after that, still 10⁸ sources remain in FoV.
 - to image one source, 10⁸ sources need to be suppressed

This requires a RMS psf sidelobe level of -49 dB

- Strong sources outside FoV are treated individually
- Side lobes become more sensitive in longer integrations
 → weaker sources will start to affect our data as well
- We cannot treat *all* theses sources individually
 → we need to suppress sources outside FoV sufficiently
- Sources outside FoV are suppressed by
 - primary beam sidelobes
 - psf sidelobes
 - time and frequency smearing (if applicable)

Squared addition of all untreated flux in sidelobes

$$\Delta S^{2} = \int_{0}^{S_{\text{max}}} \int_{0}^{2\pi} \int_{\theta_{0}}^{\pi/2} \rho(S) S^{2} E_{\text{stat}}^{2}(\theta, \phi) E_{\text{psf}}^{2}(\theta, \phi) dS d\theta d\phi$$

Assume random distribution of sources, balance with thermal noise

$$\mathsf{E}_{\mathsf{stat}} = \frac{1}{\sqrt{2\,\pi}} \left(\frac{\Delta\,\mathsf{S}}{\mathsf{E}_{\mathsf{psf}}\,\Delta\,\mathsf{S}_{\mathsf{0}}} \right)$$

where ΔS_0 is the RMS flux of all sources weaker than S_{max} ΔS is the thermal noise level

With
$$E_{psf} = -49 \text{ dB}$$
 this gives $E_{stat} = -45 \text{ dB}$

Achievable with differently randomized / rotated LFAA stations

Overall noise budget

	Assumption	value
thermal noise		1σ
calibration noise	10% penalty for extraction of information in selfcal process	0.1σ
	20% penalty for calibraiton corrections	0.2σ
	thermal noise level after selfcal	1.3σ
source confusion	negligible	0
cal. artefacts	absent	0
PSCN	balanced with thermal noise	1σ
FSCN	balanced with thermal noise	1σ
	effective noise	2.05σ

- Balancing FSCN and PSCN against thermal noise implies
 - Requirement of -49 dB RMS psf sidelobe level
 - Requirement of -45 dB RMS average station sidelobe level
 - effective noise of at least $\sqrt{3}~\sigma$
- This assumes (for 1000 h / 1 MHz LFAA observation)
 - no confusion \rightarrow maximum baseline ~500 km
 - no calibration artefacts

Getting within a factor 1.5 – 2 from thermal noise is a challenge EoR/CD needs frequency independent psf to remove confusion

Deep osbervations

- EoR/CD: 1000 hours / 1 MHz
- Continuum surveys: 10 hours / 100 MHz

Getting within a factor 1.5 – 2 of thermal noise is a challenge

- PSCN \rightarrow -49 dB RMS psf sidelobe level
- FSCN \rightarrow -45 dB RMS average station sidelobe level

Theoretically, getting within 50% of thermal noise is possible

- PSCN and FSCN need to be (almost) absent
- even more stringent requirements