TBD

BDT:

Beams, Data compression (\& Deconvolution), Tasse (Cyril)
O. Smirnov

(Rhodes Centre for Radio Astronomy Techniques \& Technologies
 \& SKA Africa)

Part I: Beams \& Far Sidelobe Confusion

MeerKAT/KAT-7 Sidelobes

SCN Cost Curves

- This shows, as a function of r, the SCN contribution from sources $r \geq r_{0}$
- i.e. how far out do we have to image \& deconvolve to drive SCN below a given level?

Cost Curve: Offset Gregorians

Cost Curve: Prime focus

The Picture For Many Dishes

Part II: Beam Smoothness \& "Calibration Noise"

Calibration "Noise"

- We have been very successful at eliminating DDE-related artefacts via direction-dependent solutions
" And by "eliminating" we mean "driving below the (thermal) noise"
" ...by which we really mean "sweeping under the carpet"
" So, how do we estimate what we have "swept", and can it come back to haunt us?

Distilling Out The Artefacts

- Two simulations:
- (I) Full sky + instrumental errors + noise
- (II) Bright sources only + instrumental errors
" ...with the same instrumental errors
- Which include DI gains and pointing errors
- Calibrate the "full sky"
- Apply solutions to (II) and subtract model
" Result: "distilled" artefacts that would normally be below the noise

Example: MeerKAT

- Residuals from a pair of 1 Jy sources
- DI cal only
- Here, rms $4.2 \mu \mathrm{Jy}$

Distilling DDEs

- But nevermind, because direction-dependent solutions can take care of it, right?
- If we run a dE solution on the two contaminator sources, the resulting image (of the full residuals) becomes thermal noise limited; remaining artefacts are below the noise.
- But we can repeat the same distillation trick to see what's left anyway

Calibration Noise, Post-dE

- Rms $2.6 \mu \mathrm{Jy}$

Why Do We Care?

- Just an extra noise-like contribution that's below the thermal noise, so what's the big deal?
- But it can be a big deal if it doesn't average out
- Imagine repeating this independently for N pointings

Mean Of 10 dE -Distills

- Structure shows up
- Does not average out as sqrt(N)

1 distill, rms $2.6 \mu \mathrm{Jy}$
10 distills, rms $1.2 \mu \mathrm{Jy}$

PF vs OG

- Repeat this experiment for PF and OG beam patterns
- Calibration "noise" for OG lower by a factor ~3

PF: rms $3.6 \mu \mathrm{Jy}$
OG: rms $1.2 \mu \mathrm{Jy}$

Why Does This Happen?

- My answer: beam smoothness
" "Smoother" PB pattern is less sensitive to pointing error
- And now consider beam rotation...

JVLA 3.2m vs. WSRT 1.6m

Uses stefcal for G and dE solutions

VLA C+D
~14h 192MHz

dE Solutions

- Large time variation
- (A-Projections: higher cadence of recomputing deconvolution kernels)
- Differences antenna-to-antenna

dE:I215:4:RR:amp|

Even More Antenna Differences

Conclusion I

- Smooth (or stationary) beams good
- Non-smooth beams bad
- OG smoother than PF

Part II: Data Compression

- Why so much data?
- Very high time/frequency resolution
- In order to avoid smearing of long baselines
- Can we average more cleverly?

What Causes Averaging

- Averaging:

$$
\begin{gathered}
V_{\text {meas }}(u, v)=\frac{1}{\Delta t \Delta \nu} \int_{\Delta t} \int_{\Delta \nu} V(t, \nu) d t d \nu \\
V(t, \nu)=V(\vec{u}(t) / \lambda)
\end{gathered}
$$

$$
V_{\text {meas }}(u, v)=\frac{1}{\operatorname{bin}} \iint_{u v \text { bin }} V(u, v) d u d v=\iint V B d u d v,
$$

where B is a boxcar ("tophat") function for the bin. This is a convolution:

$$
V_{\mathrm{meas}} \approx(V \circ B) S
$$

Averaging \approx Convolution

$$
I=\mathcal{F}^{-1}(V)
$$

$$
\mathcal{F}^{-1}(V \circ B \cdot S)=I \cdot \mathcal{F}^{-1}(B) \circ \mathrm{PSF}
$$

Windowing Functions

- The smearing response $R(l, m)=F^{-1}(B)$ falls off too rapidly/not rapidly enough
- So, why not play with B to optimize smearing response?
- Replace it with some tunable windowing function W
- Bread-and-butter filter theory
- The trade-off: increased thermal noise
- But Stefan tells us we won't reach it anyway...
- ...So maybe worth it across the field?

Early Results

Results: Sinc Filter

Increasing Integration Time

O. Smirnov - CALIM 2014-TBD

Normal Averaging VLA-C, 5s 10MHz

Normal Averaging VLA-C, 5s 10MHz

Sinc filter, FoV=2 VLA-C, 40s 50 MHz (x40 compression)

Sinc filter, FoV=3 VLA-C, 40 s 50 MHz (x 40 comporession)

Part Ila: Deconvolution

- Imaging is the ultimate data compression...

Better Deconvolution

- New deconvolution algorithms coming of age
- Compressive sensing
- SARA/PURIFY (Carrillo, Wiaux, McEwen)
- "More Sane" (see next slide):
- Image-plane only method, thus eliminates gridding/degridding cycle
- Bayesian image recovery
- Sutter et al.
- RESOLVE (Junklewitz 2013)

More Sane Deconvolution (Courtesy A. Dabbech \& C. Ferrari)

MeerKAT Dirty Image

Deconvolved Images

Residual Images

Part III: Filters

- Compression assumes calibration
- Online (streaming) calibration?
- Stefcal fast enough
" ...for regular gain calibration
- Unclear how to solve for slowly-evolving parameters
- Filters vs. Solvers
- (Courtesy of C. Tasse)

Regularity in the process

Regularity in the process

Solvers Vs. Filters

- Solver: finds the maximum likelihood solution
- e.g. over a range of time slots
- iterative
- Filter
- "Solution" is process state + process variance-covariance matrix
- ...updated at each time step using "new" data
- Recursive (fixed cost at each step) \& embarssingly parallel
- Both approaches allow for arbitrary "physical" parameterization:
- But the filter remains single-step

Non-linear Kalman Filters....

Non-linear Kalman Filters....

Example

- Left: phase calibration with BBS
- Right: fitting an analytic clock offset with a Kalman filter

Example 2: Ionospheric Simulation

Snapshot residual image

U4/US/2UI4

Snapshot residual image
$\mathrm{t}=10.1[\mathrm{~min}]$

Snapshot residual image

U. Smirnov - CALIIV 2UI4-1BD

