
A Comparison of Threaded CPU 
and GPU implementations of 
interferometry operations

Bill Cotton, NRAO

DFT based model calculation
Griding visibilities
Example using Obit



DFT based model calculation

Direct transform of sky model to UV

2

Easily adapted to direction dependent effects
Very compute intensive
Mostly evaluation of sine and cosine

ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/GPUDFTv2.pdf



GPU DFT implementation

Used nVidia GPUs programmed in CUDA
GeForce GTX 780, 2304 cores
Tesla K20c, 2496 cores
GTX 780 (cheaper) faster and used in subsequent tests

Used CUDA intrinsic __sincosf for sine/cosine
Test program used:

100 sets of 10,000 random visibilities, 512 channels
range of number of point components in sky model
multiple streams to overlap data transfer, computation

Measured wall clock execution times



DFT multi-threaded implementation

Used AVX based table lookup + Taylor series fast 
sine/cosine routine.

Used gthreads thread pools for threading
Same test case and computer as for GPUs
Machine had 6 cores hyperthreaded to 12

4



DFT GPU v. multi-threading



DFT GPU v. multi-threading, cont'd



DFT GPU v threading, cont'd

GPU implementation 30 X faster than 6 core 
threading.

Very large amount of computing per input data 
point.

Data access very good match to GPU and CPU.
No dependencies, each calculation independent

7



Griding visibilities

Visibilities randomly sampled on u-v plane
Use convolutional griding to allow use of FFT
Faceted imaging for “w” problem is very parallel

same data used for each facet
compact, separable convolution kernal (7 x 7)

Dependencies in overlapping u-v kernal.
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/GPUGrid.pdf



Griding visibilities, cont'd

9

 u-v half plane showing 
overlapping contributions of 
visibilities.



Griding, GPU implementation

Many cores, must use atomic adds to update grid.
Two passes through each set of visibilities.
1) rotate data for facet, calculate grid locations
2) convolve data, accumulate in grids

Accumulate used atomic adds
Tested on GTX 285, GTX 780 and Tesla 20c
Test data 

used EVLA u-v coverage
100 x 10,240 visibilities, 1024 channels
7 2048x2048 facets

10

 



Griding, threaded implementation

One grid per thread per facet
Two pass implementation as for GPU
Tested with and without AVX vector 

enhancement

11

 



Griding comparison

12



13

Griding comparison
GTX 285 much slower than single CPU core
Multi-threading using AVX much faster than 

GPU
Without AVX, multi-threading similar to GPU
Reasons for poor GPU performance:

quasi-random grid access
atomic adds are expensive



GPU error correction

Memory error correction in GPUs makes them 
expensive and slow.

Used griding test on the GTX 285 (no ECC) to 
determine rate of serious errors

Facets all the same and compared.
634 executions over 342 hours detected no errors.

ECC may not be good value for money

14

 



Example implementation in Obit

Implemented AVX version in Obit wideband 
imager

Ran on 16 core computer with RAID disks
Deep integration, EVLA 2-4 GHz, 

62 hrs, C, BnA
832 GByte data (before baseline dependent averaging)

<17 hours for imaging plus self-cal
1.1 Jy/bm RMS <3” resolution

15



Widefield Deep integration
16



Close up Deep integration
17



Thanks to Scott Ransom for use of his GPUs, CPUs 
and expertise

18


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

