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CLEAN does least-squares fit



What’s in a Name?

Results of Google popularity contest

..1 “compressed sensing”: 466,000 + Wikipedia entry
(+43%)

..2 “compressive sensing”: 304,000 (+22%)

..3 “compressive sampling”: 98,600 (+38%)

..4 “sparse sampling”: 86,900 (+4%)

..5 “sparse approximation”: 63,300 (-63%)

..6 “compressed sampling”: 9,020 (+4%)



What’s in a Name?

Results of Google popularity contest

..1 “compressed sensing”: 466,000 + Wikipedia entry
(+43%)

..2 “compressive sensing”: 304,000 (+22%)

..3 “compressive sampling”: 98,600 (+38%)

..4 “sparse sampling”: 86,900 (+4%)

..5 “sparse approximation”: 63,300 (-63%)

..6 “CLEAN algorithm”: 20,700 (+2%)

..7 “compressed sampling”: 9,020 (+4%)



Motivation for CS

DIGITAL CAMERA

DSP Output:
4 MB JPEG

DSP Input:
36 MB BMP

why can't this 
be 4 MB?

compress



The 12 Balls Problem
• Given 12 balls of which one is heavier or lighter than
the rest, find the odd ball using only three (3)
weighings on a balance scale

• You will need to weigh groups of balls instead of
individual balls=⇒ indirectmeasurements
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An Elaborate Solution



A Simpler Solution
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What if the odd ball is heavier?

• We can search throughmore balls in 3 weighings...

• 27 to be exact, via “ternary” search
• Non-negativity helps!
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The Ingredients of CS

High-dimensional space

Random
linear

measurements

Sparsity-inducing
norm

Compressible
signal



The CS Sampling Process
• Sampling is described by a linearmeasurement
equation

y = Ax,

with
• y a vector ofMmeasurements or samples,
• x an N-dimensional signal vector and
• A theM× Nmeasurement matrix

• Question: Can x be reconstructed from y even if
M ≪ N?

• Surprising answer: Yes, with high probability, as
long as A satisfies certain properties and x is
S-sparse (i.e. it has exactly S non-zero entries)



Recap: What does y = Ax
mean?
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Infinitely many solutions!
Pick point closest to origin (pseudo-inverse):
x∗ = A†y = AT(A AT)−1y = (0.4, 0.8)

.

Usually a unique solution!
Pick the standard inverse if it exists:
x∗ = A−1y = (−0.4, 1.2)

.

Usually no solution!
Pick point closest to all lines (pseudo-inverse):
x∗ = A†y = (ATA)−1ATy = (−0.2471, 1.0903)
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Going up one dimension
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A unique solution!
x∗ = A−1y = (−0.14, 0.44, 0.43)
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Measuring Distances: Norms

General ℓp-norm: ∥x∥p ··=

(
N∑

n=1

|xn|p
)1/p

• Euclidean: ∥x∥2 ··=
√
|x1|2 + |x2|2 + · · ·+ |xN|2

• Manhattan: ∥x∥1 ··= |x1|+ |x2|+ · · ·+ |xN|

• ℓ0-pseudonorm: ∥x∥0 ··= |{n : xn ̸= 0}|
number of non-zero elements of x=⇒ sparsity!

• Chebyshev / max-norm: ∥x∥∞ ··= max
n
|xn|



Distance Contours: Unit Spheres

On a unit “sphere” we have ∥x∥p = 1
(set of all points at the same distance from origin)
Inside of unit sphere=⇒ unit ball

�ǖ �Ǘ ��
non-convex convex

Ȋ�Ǖȋ Ȋ�Ǖ.ǚȋ



ℓ1 Promotes Sparsity (Unlike ℓ2)

Solve: min
x

∥x∥p subject to Ax = y

=⇒ Pseudoinverse solution xPI = A†y is a bad idea



Going up one dimension



Recover Sparse Signal From
RandomMeasurements

N = 2
M = 1
S = 1
SUCCESS
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Recover Sparse Signal From
RandomMeasurements

N = 2
M = 1
S = 1
FAILURE



Recover Sparse Signal From
RandomMeasurements

N = 2
M = 1
S = 1
SUCCESS RATE
= 50%



Recovery in High Dimensions
• Much better!
• Consider the size of
ℓ1–ball vs ℓ2–ball

• For N = 2, 3, 4, . . .:

V(ℓ1)
V(ℓ2)

=
2
π
,
1.3
4.2

,
0.7
4.9

, . . .

• We want small spindly
balls that are hard to
pierce



The Gory Details of Why

• Candès, Romberg, Tao, “Stable Signal Recovery
from Incomplete and Inaccurate Measurements,”
Comm. Pure Appl. Math., vol. 59, no. 8,
pp. 1207–1223, 2006 and Candès-Tao references
randommatrix theory, Banach space geometry

• Donoho, “Compressed Sensing,” IEEE
Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306,
Apr. 2006
polytope geometry, k-neighborliness, Gel’fand
widths



The Measurement Matrix A

• Compressed sensing projects the desired signal
onto a few random basis functions, instead of
many shifted impulses

• Good choices for A include:
• Gaussian matrixwith i.i.d. normal random entries
• Bernoulli matrixwith i.i.d. Bernoulli random entries
• Partial Fourier matrixwith rows drawn at random
from DFTmatrix (random frequencies)



Success vs Failure
Donoho-Tanner phase transition indicates where in
parameter space successful recovery becomes possible

M/N

S/M

general x

Credit: Donoho,
Tanner, 2010.

non-negative x

SUCCESS

FAILURE

�ǖ � �Ǖ

�ǖ �= �Ǖ



But What If…

• there is measurement noise?
• CS techniques are stable=⇒ reconstruction errors bounded

• signal is smooth instead of sparse?
• Maybe the gradient is sparse=⇒ use different TV-norm
• Represent signal in different basis where it will be sparse (e.g.
wavelets)=⇒ problem changes to y = AWx

• signal is only approximately sparse?
• CS works if signal representation is compressiblewith
amplitudes decaying according to power law

• Most natural signals are compressible!



CS for Radio Astronomy

• Consider simplified imaging equation expressing
visibilities V in terms of image brightness I,

V(uj, vj) =
N∑
k=1

I(lk,mk)e−i2π(ujlk+vjmk)

• In matrix form it becomes y = Ax, withM visibilities
yj = V(uj, vj), N image pixels xk = I(lk,mk) and
matrix entries ajk = exp{−i2π(ujlk + vjmk)}

• Natural fit to CS: the interferometer does random
projections for you! (similar situation in MRI)



Reconstruction Algorithms

Various classes of CS algorithms exist, of which the most
popular are:

• Convex relaxation (BP, NESTA, SARA, ...)
• Greedymethods (CLEAN, MP, OMP, CoSaMP, ...)
• Iterative thresholding (IHT, AMP, FISTA, ...)
• Combinatorial algorithms (chaining pursuit,
Heavy-Hitters on Steroids (HHS), ...)

• Bayesian methods (MAP with Laplacian prior...)



Practice Precedes Theory

1960 1970 1980 1990 2000 2010

Prony
1795!

OMP BPMPNNLS

Birth of CS:
Candès-Romberg-Tao

+ Donoho

CS hits RA
Briggs
NNLS

CLEAN Cotton-Schwab
CLEAN

LASSO IHT

SARA
Radio

Astronomy

CS
techniques



Just Relax: Basis Pursuit (BP)

• Ideal sparse reconstruction minimises ∥x∥0 while
being consistent with the measurements Ax = y

• This is intractable, so use next best norm instead,
which is the ℓ1 norm=⇒ convex relaxation of ℓ0

• Basis Pursuit solves the convex optimisation
problem

(BP) min
x

∥x∥1 subject to Ax = y



Handling Noise in Basis Pursuit

• For noisy measurements, change to one of

(BPϵ) min
x

∥x∥1 subject to ∥y− Ax∥2 ≤ ϵ

(QPλ) min
x

(
∥y− Ax∥22 + λ∥x∥1

)
• Quadratic Program QPλ is least-squares with ℓ1
regularisation

• Tune parameters ϵ and λ based on SNR
• Easy to add constraints such as non-negativity of x,
e.g. BPϵ+ andQPλ+



Greedy: Matching Pursuit (MP)

• Views recovery problem as finding a sparse
representation for theM× 1measurement vector
y =

∑N
j=1 xjaj, based on the columns aj of A

(i.e. only a few xj terms are non-zero)
• MP terminology: A is dictionary of atoms aj
• MP approximately solves the problem

(MP) min
x

∥y− Ax∥22 subject to ∥x∥0 ≤ S



Matching Pursuit Algorithm

• Initialise residual r(0) = y
• At kth iteration, select atomwhich fits residual best,
as a(k) = argmaxa|⟨r(k), a⟩|, which amounts to
picking the peak of |AHr(k)|

• Update residual to r(k+1) = r(k) − aka(k), with
ak = ⟨r(k), a⟩

• Stop when residual becomes small enough
• Recovered signal has non-zero entries ak at
locations of selected atoms



Orthogonal Matching Pursuit

• This is identical to MP, but adds a least-squares fit
step after selecting a new atom, which readjusts the
amplitudes of all atoms to best fit the data

• Easy to add non-negativity constraint (OMP+)
• In practice, OMP is preferred to plain MP, as it
converges faster

• OMP is typically faster than BP and simpler to code
• BP problem is convex=⇒ single global optimum



Relating CLEAN to CS

• Högbom CLEAN is identical to MP, but forms
residual in image space instead of in measurement
(uv) space

• Clark CLEAN subtracts multiple components in one
iteration=⇒many MP variants such as ROMP and
StOMP do too

• Cotton-Schwab CLEAN actually operates in
measurement (uv) space like standard MP

• CLEAN loop gain idea not prevalent in MP literature
=⇒ rather rebalances components as in OMP



Relating NNLS to CS
• Consider Non-Negative Least Squares (Briggs, 1995)
• NNLS is identical to OMP with non-negativity
constraint, but operates in the image domain
instead of uv domain, solving

AHy = AHAx subject to ∥x∥0 ≤ S and x ≥ 0

• This explains the tendency of NNLS to compact flux
• The CS version improves on standard NNLS by
operating directly in uv domain: improved accuracy
and reducedmemory usage (M× S instead of
N× N)

• Standard OMP fits in between CLEAN and NNLS



Observation
• PKS 1610-60 galaxy
• 12.8 hours at 1822 MHz
• Flagged, calibrated and
averaged in MIRIAD
(Laura Richter)

• M = 94390 visibilities
• Made 100 × 100 image
in CASA with Cotton-
Schwab CLEAN (3’
restoring beam)

• CLEAN and CS methods
very similar sinceM > N
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Experimental Setup

• Up the challenge: selected 10-minute segment to
produce snapshot image

• N = 10000 pixels,M = 1140 measurements, about
S = 200 components

• Methods tested via CASA and compsense:
• Cotton-Schwab CLEAN (loop gain 0.1, max 2000 iters)
• OMP, OMP+ (max 200 iterations)
• QPλ, QPλ+ (λ automatically tuned to reflect SNR)
• BPϵ, BPϵ+ (ϵ automatically tuned to reflect SNR)



Results: Standard CLEAN

Dirty image Cotton-Schwab CLEAN

CLEAN does not pick up central part of galaxy



Results: OMP and OMP+

OMP OMP+

OMP+ has small, lumpy residual (very few components)



Results: QPλ and QPλ+

QP QP +

Good correspondence with reference image



Results: BPϵ and BPϵ+

BP BP +

Good correspondence with reference image



Sparsity, Dynamic Range, CPU

Method # Comps DR CPU time (s)
Cotton-Schwab 188 16.5 3.6

OMP 105 11.4 6.4
OMP+ 39 16.4 15.1

QPλ 98 24.5 47.9
QPλ+ 212 42.4 46.8

(BPϵ 119 37.4 235.6)
BPϵ+ 145 36.8 76.2



Conclusions

CLEAN works because:
• Astronomical images consist of point sources and
blobs with amplitudes that decay according to a
power law

• Telescopes produce indirect measurements that are
semi-random in Fourier plane

• CLEAN is a version of matching pursuit that
approximately solves the CS reconstruction
problem

Exciting time for deconvolution - new algorithms,
performance guarantees
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