Compressed Sensing for Radio Astronomers or: Why CLEAN Works

Ludwig Schwardt

SKA Calibration & Imaging Workshop
Kiama, Australia
5 March 2014

The Other (Unrelated) Schwarz

Ulrich J. Schwarz

"Mathematical-statistical description of the iterative beam-removing technique (Method CLEAN)", A&A 65, 345, 1978.

CLEAN does least-squares fit

What's in a Name?

Results of Google popularity contest

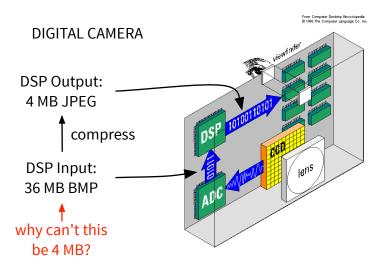
- "compressed sensing": 466,000 + Wikipedia entry (+43%)
- "compressive sensing": 304,000 (+22%)
- **3** "compressive sampling": 98,600 (+38%)
- "sparse sampling": 86,900 (+4%)
- s "sparse approximation": 63,300 (-63%)
- 6 "compressed sampling": 9,020 (+4%)

What's in a Name?

Results of Google popularity contest

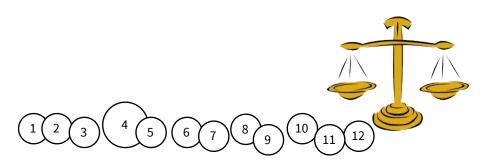
- "compressed sensing": 466,000 + Wikipedia entry (+43%)
- "compressive sensing": 304,000 (+22%)
- **3** "compressive sampling": 98,600 (+38%)
- "sparse sampling": 86,900 (+4%)
- s "sparse approximation": 63,300 (-63%)
- 6 "CLEAN algorithm": 20,700 (+2%)
- "compressed sampling": 9,020 (+4%)

Motivation for CS

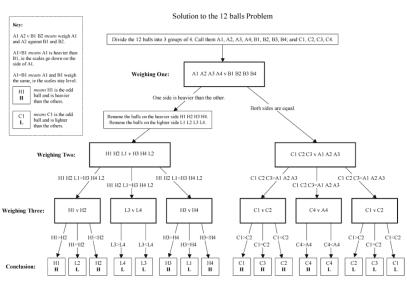


The 12 Balls Problem

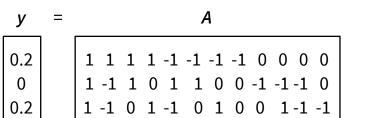
- Given 12 balls of which one is heavier or lighter than the rest, find the odd ball using only three (3) weighings on a balance scale
- You will need to weigh groups of balls instead of individual balls
 indirect measurements



An Elaborate Solution



A Simpler Solution



Credit: Peter Harrison (curiouser.co.uk)

- 10
- 12

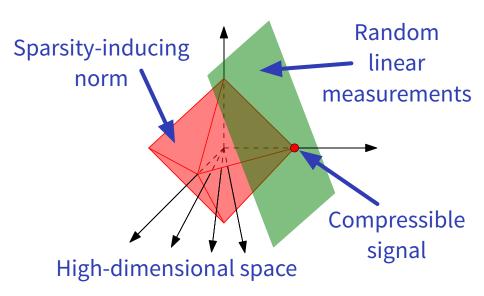
What if the odd ball is heavier?

• We can search through more balls in 3 weighings...

What if the odd ball is heavier?

- We can search through more balls in 3 weighings...
- 27 to be exact, via "ternary" search
- Non-negativity helps!

The Ingredients of CS



The CS Sampling Process

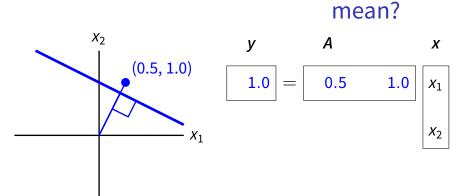
Sampling is described by a linear measurement equation

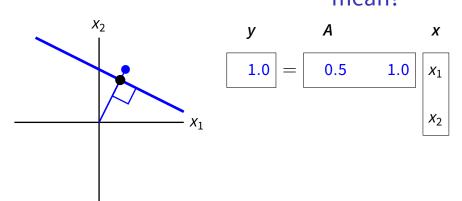
$$y = Ax$$

with

- y a vector of M measurements or samples,
- x an N-dimensional signal vector and
- A the M × N measurement matrix
- Question: Can x be reconstructed from y even if M ≪ N?
- Surprising answer: Yes, with high probability, as long as A satisfies certain properties and x is
 S-sparse (i.e. it has exactly S non-zero entries)

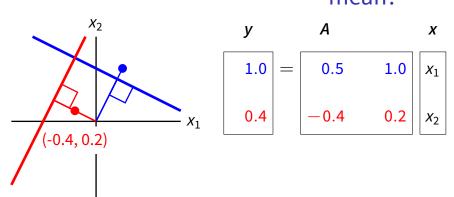
Recap: What does y = Ax

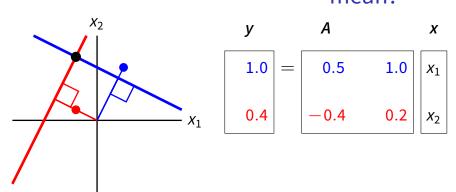




Infinitely many solutions!
Pick point closest to origin (pseudo-inverse):

$$\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{y} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1} \mathbf{y} = (0.4, 0.8)$$

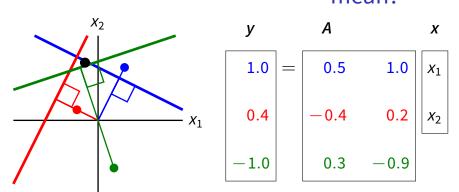




Usually a unique solution! Pick the standard inverse if it exists:

$$x^* = A^{-1}y = (-0.4, 1.2)$$

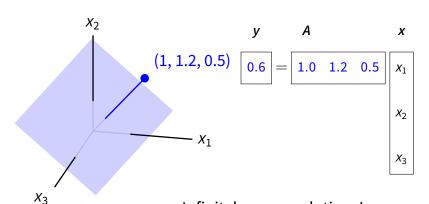




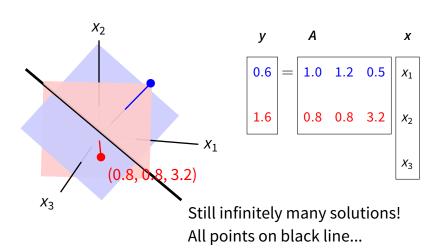
Usually no solution!

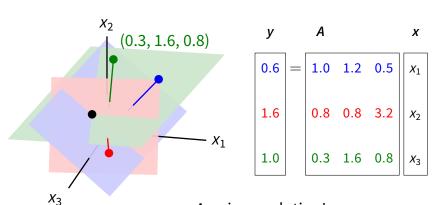
Pick point closest to all lines (pseudo-inverse):

$$\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{y} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y} = (-0.2471, 1.0903)$$



Infinitely many solutions! All points on blue plane...





A unique solution!

$$\mathbf{x}^* = \mathbf{A}^{-1}\mathbf{y} = (-0.14, 0.44, 0.43)$$

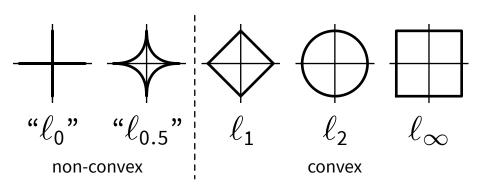
Measuring Distances: Norms

General
$$\ell_p$$
-norm: $\|\mathbf{x}\|_p := \left(\sum_{n=1}^N |x_n|^p\right)^{1/p}$

- Euclidean: $||x||_2 := \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_N|^2}$
- Manhattan: $||x||_1 := |x_1| + |x_2| + \cdots + |x_N|$
- ℓ_0 -pseudonorm: $||x||_0 := |\{n : x_n \neq 0\}|$ number of non-zero elements of $x \Longrightarrow$ sparsity!
- Chebyshev / max-norm: $||x||_{\infty} := \max_{n} |x_n|$

Distance Contours: Unit Spheres

On a unit "sphere" we have $||x||_p = 1$ (set of all points at the same distance from origin) Inside of unit sphere \Longrightarrow **unit ball**



ℓ_1 Promotes Sparsity (Unlike ℓ_2)

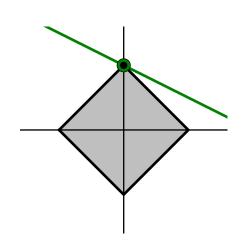
Solve: $\min_{\mathbf{x}} \|\mathbf{x}\|_{p}$ subject to $A\mathbf{x} = \mathbf{y}$ \Longrightarrow Pseudoinverse solution $\mathbf{x}_{\text{Pl}} = \mathbf{A}^{\dagger}\mathbf{y}$ is a **bad idea**

N = 2M = 1

., _

S = 1

SUCCESS

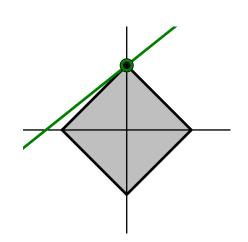


$$N = 2$$

 $M = 1$

S = 1

SUCCESS

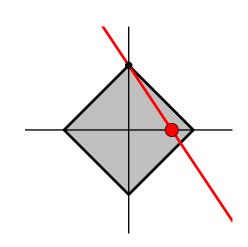


$$N = 2$$

M = 1

S = 1

FAILURE



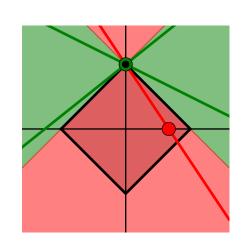
$$N = 2$$

 $M = 1$

S = 1

SUCCESS RATE

= 50%



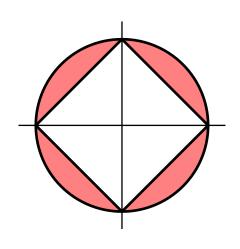
Recovery in High Dimensions

Much better!

- Consider the size of ℓ_1 -ball vs ℓ_2 -ball
- For N = 2, 3, 4, ...:

$$\frac{V(\ell_1)}{V(\ell_2)} = \frac{2}{\pi}, \frac{1.3}{4.2}, \frac{0.7}{4.9}, \dots$$

 We want small spindly balls that are hard to pierce



The Gory Details of Why

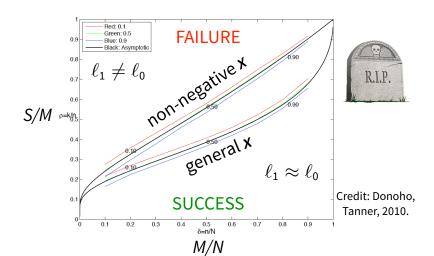
- Candès, Romberg, Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements," Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, 2006 and Candès-Tao references random matrix theory, Banach space geometry
- Donoho, "Compressed Sensing," IEEE
 Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306,
 Apr. 2006
 polytope geometry, k-neighborliness, Gel'fand
 widths

The Measurement Matrix A

- Compressed sensing projects the desired signal onto a few random basis functions, instead of many shifted impulses
- Good choices for A include:
 - · Gaussian matrix with i.i.d. normal random entries
 - Bernoulli matrix with i.i.d. Bernoulli random entries
 - Partial Fourier matrix with rows drawn at random from DFT matrix (random frequencies)

Success vs Failure

Donoho-Tanner phase transition indicates where in parameter space successful recovery becomes possible



But What If...

- there is measurement noise?
 - CS techniques are stable ⇒ reconstruction errors bounded
- signal is smooth instead of sparse?
 - Maybe the gradient is sparse ⇒ use different TV-norm
 - Represent signal in different basis where it will be sparse (e.g. wavelets)

 problem changes to y = AWx
- signal is only approximately sparse?
 - CS works if signal representation is compressible with amplitudes decaying according to power law
 - · Most natural signals are compressible!

CS for Radio Astronomy

 Consider simplified imaging equation expressing visibilities V in terms of image brightness I,

$$V(u_j, v_j) = \sum_{k=1}^{N} I(l_k, m_k) e^{-i2\pi(u_j l_k + v_j m_k)}$$

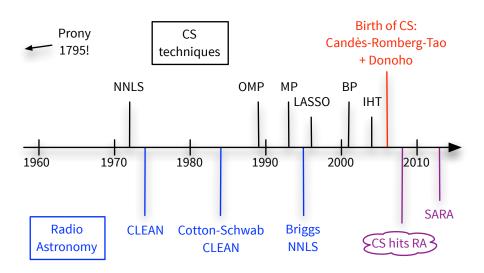
- In matrix form it becomes y = Ax, with M visibilities $y_j = V(u_j, v_j)$, N image pixels $x_k = I(l_k, m_k)$ and matrix entries $a_{jk} = \exp\{-i2\pi(u_j l_k + v_j m_k)\}$
- Natural fit to CS: the interferometer does random projections for you! (similar situation in MRI)

Reconstruction Algorithms

Various classes of CS algorithms exist, of which the most popular are:

- Convex relaxation (BP, NESTA, SARA, ...)
- Greedy methods (CLEAN, MP, OMP, CoSaMP, ...)
- Iterative thresholding (IHT, AMP, FISTA, ...)
- Combinatorial algorithms (chaining pursuit, Heavy-Hitters on Steroids (HHS), ...)
- Bayesian methods (MAP with Laplacian prior...)

Practice Precedes Theory



Just Relax: Basis Pursuit (BP)

- Ideal sparse reconstruction minimises $||x||_0$ while being consistent with the measurements Ax = y
- This is intractable, so use next best norm instead, which is the ℓ_1 norm \Longrightarrow convex relaxation of ℓ_0
- Basis Pursuit solves the convex optimisation problem

(BP) min
$$||x||_1$$
 subject to $Ax = y$

Handling Noise in Basis Pursuit

· For noisy measurements, change to one of

$$\begin{split} (\mathsf{BP}_{\epsilon}) & & \min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \leq \epsilon \\ (\mathsf{QP}_{\lambda}) & & \min_{\mathbf{x}} \left(\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1\right) \end{split}$$

- Quadratic Program $\operatorname{QP}_{\lambda}$ is least-squares with ℓ_1 regularisation
- Tune parameters ϵ and λ based on SNR
- Easy to add constraints such as non-negativity of x,
 e.g. BP_ε+ and QP_λ+

Greedy: Matching Pursuit (MP)

- Views recovery problem as finding a sparse representation for the $M \times 1$ measurement vector $\mathbf{y} = \sum_{j=1}^{N} x_j \mathbf{a}_j$, based on the columns \mathbf{a}_j of \mathbf{A} (i.e. only a few x_j terms are non-zero)
- MP terminology: A is dictionary of atoms a_i
- MP approximately solves the problem

(MP) min
$$||y - Ax||_2^2$$
 subject to $||x||_0 \le S$

Matching Pursuit Algorithm

- Initialise **residual** $r^{(0)} = y$
- At kth iteration, select atom which fits residual best, as $\mathbf{a}^{(k)} = \arg\max_{\mathbf{a}} |\langle \mathbf{r}^{(k)}, \mathbf{a} \rangle|$, which amounts to picking the peak of $|\mathbf{A}^H \mathbf{r}^{(k)}|$
- Update residual to $r^{(k+1)} = r^{(k)} a_k a^{(k)}$, with $a_k = \langle r^{(k)}, a \rangle$
- Stop when residual becomes small enough
- Recovered signal has non-zero entries a_k at locations of selected atoms

Orthogonal Matching Pursuit

- This is identical to MP, but adds a least-squares fit step after selecting a new atom, which readjusts the amplitudes of all atoms to best fit the data
- Easy to add non-negativity constraint (OMP+)
- In practice, OMP is preferred to plain MP, as it converges faster
- OMP is typically faster than BP and simpler to code
- BP problem is convex ⇒ single global optimum

Relating CLEAN to CS

- Högbom CLEAN is identical to MP, but forms residual in image space instead of in measurement (uv) space
- Clark CLEAN subtracts multiple components in one iteration ⇒ many MP variants such as ROMP and StOMP do too
- Cotton-Schwab CLEAN actually operates in measurement (uv) space like standard MP
- CLEAN loop gain idea not prevalent in MP literature
 rather rebalances components as in OMP

Relating NNLS to CS

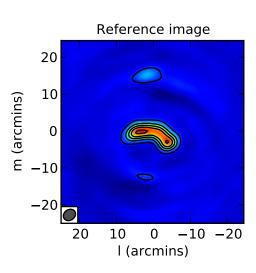
- Consider Non-Negative Least Squares (Briggs, 1995)
- NNLS is identical to OMP with non-negativity constraint, but operates in the image domain instead of uv domain, solving

$$A^{H}y = A^{H}Ax$$
 subject to $||x||_{0} \le S$ and $x \ge 0$

- This explains the tendency of NNLS to compact flux
- The CS version improves on standard NNLS by operating directly in uv domain: improved accuracy and reduced memory usage (M × S instead of N × N)
- Standard OMP fits in between CLEAN and NNLS

Observation

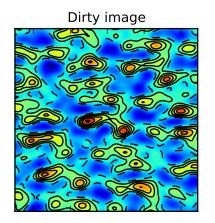
- PKS 1610-60 galaxy
- 12.8 hours at 1822 MHz
- Flagged, calibrated and averaged in MIRIAD (Laura Richter)
- M = 94390 visibilities
- Made 100 × 100 image in CASA with Cotton-Schwab CLEAN (3' restoring beam)
- CLEAN and CS methods very similar since M > N

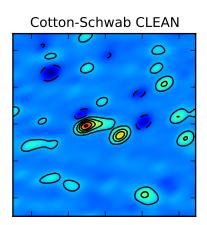


Experimental Setup

- Up the challenge: selected 10-minute segment to produce snapshot image
- N = 10000 pixels, M = 1140 measurements, about S = 200 components
- Methods tested via CASA and compsense:
 - Cotton-Schwab CLEAN (loop gain 0.1, max 2000 iters)
 - OMP, OMP+ (max 200 iterations)
 - QP_{λ} , QP_{λ} + (λ automatically tuned to reflect SNR)
 - BP_{ϵ} , $BP_{\epsilon}+$ (ϵ automatically tuned to reflect SNR)

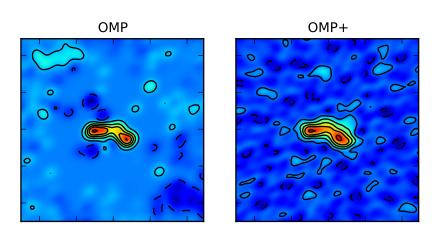
Results: Standard CLEAN





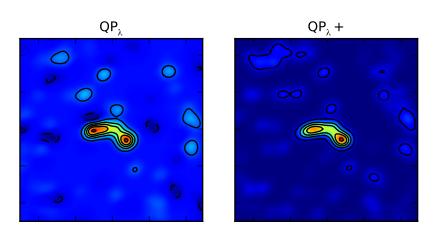
CLEAN does not pick up central part of galaxy

Results: OMP and OMP+



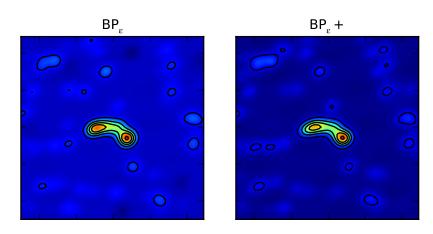
OMP+ has small, lumpy residual (very few components)

Results: QP_{λ} and QP_{λ} +



Good correspondence with reference image

Results: BP_{ϵ} and $BP_{\epsilon}+$



Good correspondence with reference image

Sparsity, Dynamic Range, CPU

Method	# Comps	DR	CPU time (s)
Cotton-Schwab	188	16.5	3.6
OMP	105	11.4	6.4
OMP+	39	16.4	15.1
QP_λ	98	24.5	47.9
$QP_{\lambda} +$	212	42.4	46.8
$(BP_\epsilon$	119	37.4	235.6)
$BP_\epsilon +$	145	36.8	76.2

Conclusions

CLEAN works because:

- Astronomical images consist of point sources and blobs with amplitudes that decay according to a power law
- Telescopes produce indirect measurements that are semi-random in Fourier plane
- CLEAN is a version of matching pursuit that approximately solves the CS reconstruction problem

Exciting time for deconvolution - new algorithms, performance guarantees