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The Other (Unrelated) Schwarz

Ulrich J. Schwarz

“Mathematical-statistical
description of the iterative
beam-removing technique
(Method CLEAN)”, A&A 65,
345, 1978.

CLEAN does least-squares fit




What’s in a Name?

Results of Google popularity contest

® “compressed sensing”: 466,000 + Wikipedia entry
(+43%)

“compressive sensing”: 304,000 (+22%)
“compressive sampling”: 98,600 (+38%)

“sparse sampling”: 86,900 (+4%)

“sparse approximation”: 63,300 (-63%)
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“compressed sampling”: 9,020 (+4%)
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Motivation for CS

DIGITAL CAMERA

DSP Output: A
4 MB JPEG

T compress

DSP Input:
36 MB BMP

why can't this
be 4 MB?



The 12 Balls Problem

- Given 12 balls of which one is heavier or lighter than
the rest, find the odd ball using only three (3)
weighings on a balance scale

+ You will need to weigh groups of balls instead of
individual balls = indirect measurements



An Elaborate Solution

Solution to the 12 balls Problem

Key:

2 3
i Divide the 12 balls into 3 groups of 4. Call them A1, A2, A3, A%; B, B2, B3, B4.and C1,€2,C3, C4

AL=BI means Al is heavier than
B ie the scales go downon the

side of Al
AI=B1 meons Al and Bl w Weighing One: A1A2A3Ad vBI B2 B3 B4
the same, ic the scales stay level

means H1 is the odd

ball and s beavier One side is heavier than the other.

than the others.
Both sides are equal

means Cl s the odd
ball and is lighter
than the others.

Rename the balls on the beavier side H1 H2 H3 Hd,
Rename the balls on the lighter side L1 L2 L3 LA

pd

Weighing Two: HEH2 LD v H3 FA 12 CIC2CIVAI AZ A3
HI 12 LIH3 He 12 [ HIH2 LI<H3 H4 12 CIC2C32A1 A2A3 | C1C2C3<A1 A2A3
/ HIHZ]IIU CI1C2C3=A1 A2A3
‘Weighing Three: HlvH2 3vi4 H3vH4 CivC2 Cavad ClvC2

| /

H3<H4 Ci1=C2

crac2 | ci=c2 LI 2
Ci=Ad Cd=Ad j C\'C"
c c4
"

O curiouser.co.uk 2003 All Rights Reserved

HI=H2 | HI<H2

HO: -|
j Hi=H2 314 L3414 '/ }13—11 J cl=c2
Conclusion: i




A Simpler Solution
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Credit: Peter Harrison
(curiouser.co.uk)




What if the odd ball is heavier?

« We can search through more balls in 3 weighings...



What if the odd ball is heavier?

« We can search through more balls in 3 weighings...
. 27 to be exact, via “ternary” search
« Non-negativity helps!



The Ingredients of CS

Random
linear
measurements

Sparsity-inducing
norm

Compressible

, , , signal
High-dimensional space



The CS Sampling Process

« Sampling is described by a linear measurement
equation
y = Ax,
with
« yavector of M measurements or samples,

+ xan N-dimensional signal vector and
« Athe M X N measurement matrix

+ Question: Can x be reconstructed from y even if
M < N?

« Surprising answer: Yes, with high probability, as
long as A satisfies certain properties and x is
S-sparse (i.e. it has exactly S non-zero entries)



X2

Recap: What does y = Ax
mean?

(0.5,1.0)

X1

A

1.0

0.5

1.0

X2




Recap: What does y = Ax

X2

X1

Infinitely many solutions!

mean?
y A X
1.0 0.5 1.0 | x;
X2

Pick point closest to origin (pseudo-inverse):

x*=Aly = AT(AA)) 'y = (0.4,0.8)




X2

Recap: What does y = Ax

/(—0.4, 0.2)

X1

mean?
y A X
1.0 0.5 1.0 || x;
0.4 —0.4 0.2 [x;




X2

Recap: What does y = Ax

X1

Usually a unique solution!
Pick the standard inverse if it exists:
X' =Aly=(-04,12)

mean?
y A X
1.0 0.5 1.0 || x;
0.4 —0.4 0.2 [x;




Recap: What does y = Ax

X2

(0.3,-0.9)

X1

mean?
y A X
1.0 0.5 1.0 || x;
0.4 —0.4 0.2 || x;
—1.0 0.3 —0.9




Recap: What does y = Ax

mean?
%2 y A X
1.0|=| 0.5 1.0 || x;
X 0.4 —0.4 0.2 || x;

—1.0 0.3 —0.9

Usually no solution!
Pick point closest to all lines (pseudo-inverse):
x* = Aly = (ATA) "'ATy = (—0.2471,1.0903)



Going up one dimension

y A X

(1,1.2,0.5) |o6|=|1.0 12 05| x

/ :

1

Infinitely many solutions!
All points on blue plane...



Going up one dimension

y A X

0.6|=|1.0 1.2 05]||x

1.6 0.8 0.8 3.2(|x,

X3

,3.2) 1

Still infinitely many solutions!
All points on black line...



Going up one dimension

X2
A
(0.3, 1.6, 0.8) y X
I / 06|=1.0 1.2 05| x
° 16| |08 08 32||x
S N
/ 1.0 0.3 1.6 0.8]|x3

A unique solution!
X" =A"'y = (—0.14,0.44,0.43)



Measuring Distances: Norms

N 1/p
General {,-norm:  ||x||, = (an|p>
n=1

. Euclidean: x|, := v/pal2 T bl + -+ Pl

- Manhattan:  ||x||; := || + x| + - + x|

- ly-pseudonorm: ||x||o := |{n : x, # 0}|
number of non-zero elements of x =—> sparsity!

- Chebyshev/ max-norm: ||x||» := max|x,|
n



Distance Contours: Unit Spheres

On a unit “sphere” we have ||x||, = 1
(set of all points at the same distance from origin)
Inside of unit sphere => unit ball

(1
N

“ZO b} “60,5 9

non-convex

0 6 U

convex



¢, Promotes Sparsity (Unlike £5)

Solve: min ||x||, subjectto Ax =y
X

— Pseudoinverse solution xp; = ATy isa bad idea

X2

X2

constraint: 0.5x; + x, = 1 (0.4,0.8)




Going up one dimension

X2

N
*——



Recover Sparse Sighal From
Random Measurements

N=2
M=1

S=1
SUCCESS




Recover Sparse Sighal From
Random Measurements

N=2
M=1

S=1 7
SUCCESS




Recover Sparse Sighal From
Random Measurements

N=2
M=1

S=1
FAILURE




Recover Sparse Signal From
Random Measurements




Recovery in High Dimensions

« Much better!

. Consider the size of

« ForN =2,3,4,...:

¢;-ball vs ¢,-ball

2 1.3 0.7
"2

49"

3
4.2’

- We want small spindly
balls that are hard to
pierce




The Gory Details of Why

- Candes, Romberg, Tao, “Stable Signal Recovery
from Incomplete and Inaccurate Measurements,”
Comm. Pure Appl. Math., vol. 59, no. 8,

pp. 1207-1223, 2006 and Candés-Tao references
random matrix theory, Banach space geometry

Donoho, “Compressed Sensing,” IEEE

Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306,
Apr. 2006

polytope geometry, k-neighborliness, Gel’fand
widths



The Measurement Matrix A

- Compressed sensing projects the desired signal
onto a few random basis functions, instead of
many shifted impulses

« Good choices for Ainclude:

« Gaussian matrix with i.i.d. normal random entries

« Bernoulli matrix with i.i.d. Bernoulli random entries

- Partial Fourier matrix with rows drawn at random
from DFT matrix (random frequencies)



Success vs Failure
Donoho-Tanner phase transition indicates where in
parameter space successful recovery becomes possible
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But What If...

+ there is measurement noise?
« CStechniques are stable => reconstruction errors bounded

- signal is smooth instead of sparse?
« Maybe the gradient is sparse = use different TV-norm
+ Represent signal in different basis where it will be sparse (e.g.
wavelets) = problem changes to y = AWx

- signalis only approximately sparse?
« CSworks if signal representation is compressible with

amplitudes decaying according to power law
« Most natural signals are compressible!



CS for Radio Astronomy

- Consider simplified imaging equation expressing
visibilities Vin terms of image brightness /,

U/, Vj E :/ Ik; —i2n(ujl+vimy)

« In matrix form it becomes y = Ax, with M visibilities
yj = V(u;, v;), N image pixels x, = I(l, mx) and
matrix entries ay = exp{ —i2m(u;lx + v;my) }

- Natural fit to CS: the interferometer does random
projections for you! (similar situation in MRI)



Reconstruction Algorithms

Various classes of CS algorithms exist, of which the most
popular are:

- Convex relaxation (BP, NESTA, SARA, ...)
- Greedy methods (CLEAN, MP, OMP, CoSaMP, ...)
- lterative thresholding (IHT, AMP, FISTA, ...)

- Combinatorial algorithms (chaining pursuit,
Heavy-Hitters on Steroids (HHS), ...)

- Bayesian methods (MAP with Laplacian prior...)



Practice Precedes Theory

v

Birth of CS:
Prony cS Candés-Romberg-T.
<« 1795 techniques andés-Romberg-Tao
+ Donoho
NNLS OMP MP BP
LASSO IHT
| | | S
1960 1970 1980 1990 2000 2010
SARA

Radio CLEAN Cotton-Schwab  Briggs
Astronomy CLEAN NNLS




Just Relax: Basis Pursuit (BP)

- |deal sparse reconstruction minimises ||x||o while
being consistent with the measurements Ax = y

- Thisis intractable, so use next best norm instead,
which is the /; norm — convex relaxation of ¢,

- Basis Pursuit solves the convex optimisation
problem

(BP)  min||x||, subjectto Ax=y
X



Handling Noise in Basis Pursuit

- For noisy measurements, change to one of
(BP.) min|x||; subjectto |y —Ax|,<e€
X

(QPy) min (Ily — Ax|[3 + Alx][1)

- Quadratic Program QP is least-squares with /;
regularisation

. Tune parameters € and \ based on SNR

- Easy to add constraints such as non-negativity of x,
e.g. BP.+ and QP,+



Greedy: Matching Pursuit (MP)

- Views recovery problem as finding a sparse
representation for the M X 1 measurement vector
y= Z,’-Vzl x;a;, based on the columns a; of A

(i.e. only a few x; terms are non-zero)

- MP terminology: A s dictionary of atoms g;
« MP approximately solves the problem

(MP)  min|ly — Ax||5> subjectto [|x|lo <'S
X



Matching Pursuit Algorithm

- Initialise residual rl® = y

- At kth iteration, select atom which fits residual best,
as a¥) = argmax,|(r'¥), a)|, which amounts to
picking the peak of |A"r()|

. Update residual to r“*1) = r® — g,a(¥) with

a, = (r®, a)

- Stop when residual becomes small enough

- Recovered signal has non-zero entries gy at
locations of selected atoms



Orthogonal Matching Pursuit

- Thisis identical to MP, but adds a least-squares fit
step after selecting a new atom, which readjusts the
amplitudes of all atoms to best fit the data

- Easy to add non-negativity constraint (OMP+)

- In practice, OMP is preferred to plain MP, as it
converges faster

- OMP is typically faster than BP and simpler to code
« BP problem is convex = single global optimum



Relating CLEAN to CS

« Hogbom CLEAN is identical to MP, but forms
residual in image space instead of in measurement
(uv) space

« Clark CLEAN subtracts multiple components in one
iteration => many MP variants such as ROMP and
StOMP do too

« Cotton-Schwab CLEAN actually operates in
measurement (uv) space like standard MP

CLEAN loop gain idea not prevalent in MP literature
— rather rebalances components as in OMP



Relating NNLS to CS

- Consider Non-Negative Least Squares (Briggs, 1995)
« NNLS is identical to OMP with non-negativity
constraint, but operates in the image domain
instead of uv domain, solving

Ay = AAx  subjectto ||x|][p <S and x>0

- This explains the tendency of NNLS to compact flux

« The CS version improves on standard NNLS by
operating directly in uv domain: improved accuracy
and reduced memory usage (M X Sinstead of

N x N)

. Standard OMP fits in between CLEAN and NNLS



+ PKS 1610-60 galaxy

. 12.8 hours at 1822 MHz

- Flagged, calibrated and
averaged in  MIRIAD
(Laura Richter)

« M = 94390 visibilities

- Made 100 x 100 image
in CASA with Cotton-
Schwab CLEAN (3
restoring beam)

« CLEAN and CS methods

very similar sinceM > N

m (arcmins)

Observation

Reference image

-10

20 10 0 -10 -20
| (arcmins)



Experimental Setup

+ Up the challenge: selected 10-minute segment to
produce snapshot image
- N = 10000 pixels, M = 1140 measurements, about

S = 200 components
- Methods tested via CASA and compsense:
- Cotton-Schwab CLEAN (loop gain 0.1, max 2000 iters)
« OMP, OMP+ (max 200 iterations)
+ QP,, QP+ (A automatically tuned to reflect SNR)
« BP, BP.+ (€ automatically tuned to reflect SNR)



Results: Standard CLEAN

Dirty image Cotton-Schwab CLEAN

CLEAN does not pick up central part of galaxy



Results: OMP and OMP-+

OMP OMP+

OMP+- has small, lumpy residual (very few components)



Results: QP, and QP+

Good correspondence with reference image



Results: BP,. and BP .+

Good correspondence with reference image



Sparsity, Dynamic Range, CPU

Method #Comps DR CPUtime/(s)
Cotton-Schwab 188 16.5 3.6
OMP 105 114 6.4
OMP+- 39 164 15.1
QP 98 245 47.9
QP,+ 212 42.4 46.8
(BP, 119 37.4 235.6)
BP.+ 145 36.8 76.2




Conclusions

CLEAN works because:

- Astronomical images consist of point sources and
blobs with amplitudes that decay according to a
power law

- Telescopes produce indirect measurements that are
semi-random in Fourier plane

- CLEAN is a version of matching pursuit that
approximately solves the CS reconstruction
problem

Exciting time for deconvolution - new algorithms,
performance guarantees



	Compressed Sensing (CS)
	Reconstruction Algorithms
	Experiment and Conclusions

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	anm1: 


