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Introduction

Interferometers provide incomplete
Fourier measurements of the observed
object (complex visibilities)

y (u) =

∫

A (l,u) x (l) e−2iπu·l d2l

◮ A (l,u) : direction dependent
effects

Image recovery poses a linear inverse problem:

y = Φx, with Φ ∈ C
M×N
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Introduction

Next generation telescopes, such as the SKA, has triggered an
intense research to reformulate imaging techniques for radio
interferometry.
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Motivation

Main challenges for next generation telescopes

◮ High resolution and dynamic range

◮ Large number of visibilities (M ≈ 106N)



4 / 28

Motivation

Main challenges for next generation telescopes

◮ High resolution and dynamic range

◮ Large number of visibilities (M ≈ 106N)

Our solution

◮ Leverage recent advances in compressed sensing (CS) and
convex optimization to address these challenging problems

◮ Effectiveness of compressed sensing applied to radio
interferometric imaging already demonstrated (Wiaux et al.
2009a, Wiaux et al. 2009b, McEwen & Wiaux 2011, Li et al.
2011, Carrillo et al. 2012)
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CS Signal Recovery (I)

◮ Suppose x is expressed in terms of a basis Ψ ∈ R
N×N , as

x = Ψα, α ∈ R
N

◮ Noisy model:
y = Φx+ n

◮ Two different approaches
◮ Synthesis based problem:

min
ᾱ∈RN

‖ᾱ‖1 subject to ‖y− ΦΨᾱ‖2 ≤ ǫ

◮ Analysis based problem:

min
x̄∈RN

‖Ψ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ǫ
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CS Signal Recovery (II)

◮ Most CS approaches solve the Lagrangian formulation:

min
ᾱ∈CN

1

2
‖y − ΦΨᾱ‖22 + λ‖ᾱ‖1

◮ Update equation:

α
(t+1) = Sλ

(

α
(t) + µΨ†Φ†(y − ΦΨα

(t))
)

◮ Efficient algorithms to solve this problem such as FISTA
(Beck and Teboulle 2009)

◮ However there is no optimal strategy to estimate λ
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Average Sparsity

◮ We recently propose the SARA algorithm based on the
average sparsity model

◮ It uses a dictionary composed of several coherent frames:

Ψ = [Ψ1,Ψ2, . . . ,Ψq]

◮ Optimization problem:

min
x̄∈RN

+

‖Ψ†x̄‖0 subject to ‖y − Φx̄‖2 ≤ ǫ

‖Ψ†x̄‖0 =
q

∑

i=1

‖Ψ†
i x̄‖0 → average sparsity

◮ A reweighting scheme solving a sequence of (convex)
weighted ℓ1-problems is used to approximate the ℓ0 problem
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Constrained Optimization

Thus we focus on solving problems of the form:

min
x̄∈RN

+

‖WΨ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ǫ

◮ ǫ = σn
√

M + 2
√
M →statistical bound

◮ x̄ ∈ R
N
+ →positivity constraint

◮ Φ = GFDA
◮ G : convolutional interpolation operator
◮ F : fast Fourier transform
◮ D : deconvolution operator
◮ A : primary beam
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A Large-scale Optimization Algorithm

◮ Large-scale data problems, i.e. M ≫ N and large N

◮ Partition y and Φ into R blocks:

y =







y1
...
yR






and Φ =







Φ1
...

ΦR







◮ Each yi is modeled as yi = Φix+ ni

◮ Reconstruction problem reformulated as

min
x̄∈RN

+

‖WΨ†x̄‖1 subject to ‖yi − Φi x̄‖2 ≤ ǫi , i = 1, . . . ,R
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Proximal Splitting Methods

◮ Solve problems of the form

min
x∈RN

f1(x) + . . .+ fS(x)

◮ f1(x), . . . , fS(x) are proper convex lower semicontinuous
functions from R

N to R (not necessarily differentiable)

◮ Key idea: split a complicated problem into several simpler
problems

◮ Each non-smooth function is incorporated in the optimization
via its proximity operator:

proxf (x) , arg min
z∈RN

f (z) +
1

2
‖x− z‖22
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Projection onto Convex Sets

◮ Proximity operators are generalizations of the set projection
operator

PC (x) = argmin
z∈C

1

2
‖x− z‖22

◮ Any convex constraint z ∈ C can be modelled by its indicator
function

iC (z) =

{

0, if z ∈ C

+∞, otherwise

◮ Proximity operator of indicator function

PC (x) = arg min
z∈RN

iC (z) +
1

2
‖x− z‖22

= proxiC (x)
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Solving the Weighted ℓ1 Problem

The ℓ1 problem can be reformulated as:

min
x∈RN

f1(L1x) + · · · + fS(LSx)

with S = R + 2

◮ L1 = Ψ†, L2 = I and Lk+2 = Φk for k = 1, . . . ,S

◮ f1(r1) = ‖Wr1‖1 for r1 ∈ R
D

◮ f2(r2) = iC (r2) with C = R
N
+

◮ fk(rk) = iBk
(rk) with Bk = {rk ∈ R

Mk : ‖yk − rk‖2 ≤ ǫk},
k = 3, . . . ,S
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Simultaneous-Direction Method of Multipliers (SDMM)

SDMM uses the following equivalent problem

minf1(r1) + . . . + fS(r3)

subject to Lkx = rk , for k = 1, . . . ,S

◮ SDMM decouples the problems for f1, . . . , fS
◮ Subproblems optimizing f1, . . . , fS no longer involve linear

operators

◮ Optimization based in an alternate primal-dual approach
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SDMM Algorithm

1: Initialize γ > 0, x̂(0) and z
(0)
i = 0, i = 1, . . . ,S .

2: r
(0)
i = Li x̂

(0), i = 1, . . . ,S .

3: x
(0)
i = L†i r

(0)
i , i = 1, . . . ,S .

4: while No convergence criteria do

5: x̂(t) = (
∑S

i=1 L
†
i Li)

−1
∑S

i=1 x
(t−1)
i .

6: for all i = 1, . . . ,S do

7: r
(t)
i = proxγfi (Li x̂

(t) + z
(t−1)
i ).

8: z
(t)
i = z

(t−1)
i + Li x̂

(t) − r
(t)
i .

9: x
(t)
i = L†i (r

(t)
i − z

(t)
i ).

10: end for

11: end while

12: return x̂(t)
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Implementation Details

Proximal operators

proxγf1(r1) = Sγ(r1) → soft thresholding

proxγf2(r2) = (r2)
+ → thresholding of negative values

proxγfk (rk) = min(1, ǫk/‖rk‖2)rk → scaling , k = 3, . . . ,S

◮ Very simple element wise operations

◮ Can be performed in parallel!
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Implementation Details

Linear system

x(t) = (
S
∑

i=1

L†i Li )
−1

S
∑

i=1

L†i (r
(t−1)
i − z

(t−1)
i )

◮ Solved iteratively using a conjugate gradient algorithm

◮ For the problem in hand
∑S

i=1 L
†
i Li = Φ†Φ+ 2I

◮ Bottleneck of the algorithm!

◮ Matrix inversion lemma can be used to accelerate the
inversion of Φ†Φ+ 2I
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PURIFY

◮ PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging

◮ SDMM based solvers for the optimization problems

◮ Implements the following sparsity priors:
◮ Daubechies orthogonal wavelets
◮ Total variation
◮ Sparsity averaging

◮ Code available at github
(http://basp-group.github.io/purify/)
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Test Images
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Reconstruction Quality Results

30Dor
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Timing Results (Not Optimized)
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Summary

◮ SARA supersedes state-of-the-art reconstruction algorithms
for RI imaging

◮ We developed an open source code (PURIFY) to scale to the
realistic setting

◮ Direction dependent effects can be incorporated in the model
as convolutional kernels in the operator G (see next talk by
Jason)

◮ New ways to improve the computational efficiency of the
algorithm have to be explored:

◮ Specialized hardware implementations
◮ Distributed approaches
◮ Dimensionality reduction techniques
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Thank You!
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