PURIFY: a new algorithmic framework for next-generation radio-interferometric imaging

Rafael E. Carrillo

Signal Processing Laboratory (LTS5)
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland &
BASP Group
Heriot-Watt University, UK

Work in collaboration with J. D. McEwen and Y. Wiaux

CALIM March 5 2014

Introduction

Interferometers provide incomplete Fourier measurements of the observed object (complex visibilities)

$$y(\mathbf{u}) = \int A(\mathbf{I}, \mathbf{u}) x(\mathbf{I}) e^{-2i\pi \mathbf{u} \cdot \mathbf{I}} d^2 \mathbf{I}$$

► *A* (**I**, **u**) : direction dependent effects

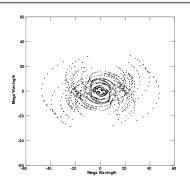


Image recovery poses a linear inverse problem:

$$\mathbf{y} = \Phi \mathbf{x}$$
, with $\Phi \in \mathbb{C}^{M \times N}$

Introduction

Next generation telescopes, such as the SKA, has triggered an intense research to reformulate imaging techniques for radio interferometry.

Motivation

Main challenges for next generation telescopes

- ▶ High resolution and dynamic range
- ▶ Large number of visibilities ($M \approx 10^6 N$)

Motivation

Main challenges for next generation telescopes

- ▶ High resolution and dynamic range
- ▶ Large number of visibilities ($M \approx 10^6 N$)

Our solution

- Leverage recent advances in compressed sensing (CS) and convex optimization to address these challenging problems
- ▶ Effectiveness of compressed sensing applied to radio interferometric imaging already demonstrated (Wiaux et al. 2009a, Wiaux et al. 2009b, McEwen & Wiaux 2011, Li et al. 2011, Carrillo et al. 2012)

Outline

CS Signal Recovery

Large-scale Optimization

Numerical Results

Outline

CS Signal Recovery

Large-scale Optimization

Numerical Results

CS Signal Recovery (I)

- Suppose **x** is expressed in terms of a basis $\Psi \in \mathbb{R}^{N \times N}$, as $\mathbf{x} = \Psi \boldsymbol{\alpha}, \ \boldsymbol{\alpha} \in \mathbb{R}^{N}$
- ► Noisy model:

$$y = \Phi x + n$$

- Two different approaches
 - Synthesis based problem:

$$\min_{\bar{\pmb{\alpha}}\in\mathbb{R}^N}\|\bar{\pmb{\alpha}}\|_1 \text{ subject to } \|\pmb{y}-\Phi\Psi\bar{\pmb{\alpha}}\|_2 \leq \epsilon$$

Analysis based problem:

$$\min_{\bar{\mathbf{x}} \in \mathbb{R}^N} \| \Psi^\dagger \bar{\mathbf{x}} \|_1 \text{ subject to } \| \mathbf{y} - \Phi \bar{\mathbf{x}} \|_2 \leq \epsilon$$

CS Signal Recovery (II)

▶ Most CS approaches solve the Lagrangian formulation:

$$\min_{\bar{\boldsymbol{\alpha}} \in \mathbb{C}^{\mathcal{N}}} \frac{1}{2} \|\mathbf{y} - \Phi \Psi \bar{\boldsymbol{\alpha}}\|_{2}^{2} + \lambda \|\bar{\boldsymbol{\alpha}}\|_{1}$$

Update equation:

$$\boldsymbol{\alpha}^{(t+1)} = \mathsf{S}_{\lambda} \left(\boldsymbol{\alpha}^{(t)} + \mu \Psi^{\dagger} \Phi^{\dagger} (\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}^{(t)}) \right)$$

- Efficient algorithms to solve this problem such as FISTA (Beck and Teboulle 2009)
- ▶ However there is no optimal strategy to estimate λ

Average Sparsity

- We recently propose the SARA algorithm based on the average sparsity model
- ▶ It uses a dictionary composed of several coherent frames:

$$\Psi = [\Psi_1, \Psi_2, \dots, \Psi_q]$$

Optimization problem:

$$\min_{\bar{\mathbf{x}} \in \mathbb{R}_+^N} \| \Psi^\dagger \bar{\mathbf{x}} \|_0 \text{ subject to } \| \mathbf{y} - \Phi \bar{\mathbf{x}} \|_2 \leq \epsilon$$

$$\|\Psi^\daggerar{\mathbf{x}}\|_0=\sum_{i=1}^q\|\Psi_i^\daggerar{\mathbf{x}}\|_0 o$$
 average sparsity

▶ A reweighting scheme solving a sequence of (convex) weighted ℓ_1 -problems is used to approximate the ℓ_0 problem

Constrained Optimization

Thus we focus on solving problems of the form:

$$\min_{\bar{\mathbf{x}} \in \mathbb{R}_+^N} \| \mathsf{W} \mathsf{\Psi}^\dagger \bar{\mathbf{x}} \|_1 \text{ subject to } \| \mathbf{y} - \Phi \bar{\mathbf{x}} \|_2 \leq \epsilon$$

- $\epsilon = \sigma_n \sqrt{M + 2\sqrt{M}} \rightarrow \text{statistical bound}$
- $f ar{x} \in \mathbb{R}_+^N o$ positivity constraint
- ▶ Φ = GFDA
 - ► G : convolutional interpolation operator
 - F: fast Fourier transform
 - D : deconvolution operator
 - A : primary beam

Outline

CS Signal Recovery

Large-scale Optimization

Numerical Results

A Large-scale Optimization Algorithm

- ▶ Large-scale data problems, i.e. $M \gg N$ and large N
- Partition y and Φ into R blocks:

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_R \end{bmatrix} \text{ and } \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_R \end{bmatrix}$$

- ► Each \mathbf{y}_i is modeled as $\mathbf{y}_i = \Phi_i \mathbf{x} + \mathbf{n}_i$
- Reconstruction problem reformulated as

$$\min_{\bar{\mathbf{x}} \in \mathbb{R}^N_+} \| \mathsf{W} \Psi^\dagger \bar{\mathbf{x}} \|_1 \text{ subject to } \| \mathbf{y}_i - \Phi_i \bar{\mathbf{x}} \|_2 \leq \epsilon_i, i = 1, \dots, R$$

Proximal Splitting Methods

▶ Solve problems of the form

$$\min_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + \ldots + f_S(\mathbf{x})$$

- ▶ $f_1(\mathbf{x}), \dots, f_S(\mathbf{x})$ are proper convex lower semicontinuous functions from \mathbb{R}^N to \mathbb{R} (not necessarily differentiable)
- Key idea: split a complicated problem into several simpler problems
- Each non-smooth function is incorporated in the optimization via its proximity operator:

$$\operatorname{prox}_{f}(\mathbf{x}) \triangleq \arg\min_{\mathbf{z} \in \mathbb{R}^{N}} f(\mathbf{z}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

Projection onto Convex Sets

 Proximity operators are generalizations of the set projection operator

$$P_C(\mathbf{x}) = \arg\min_{\mathbf{z} \in C} \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2$$

Any convex constraint z ∈ C can be modelled by its indicator function

$$i_C(\mathbf{z}) = \left\{ \begin{array}{ll} 0, & \text{if } \mathbf{z} \in C \\ +\infty, & \text{otherwise} \end{array} \right.$$

Proximity operator of indicator function

$$P_C(\mathbf{x}) = \arg\min_{\mathbf{z} \in \mathbb{R}^N} i_C(\mathbf{z}) + \frac{1}{2} ||\mathbf{x} - \mathbf{z}||_2^2$$
$$= \operatorname{prox}_{i_C}(\mathbf{x})$$

Solving the Weighted ℓ_1 Problem

The ℓ_1 problem can be reformulated as:

$$\min_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathsf{L}_1\mathbf{x}) + \cdots + f_S(\mathsf{L}_S\mathbf{x})$$

with S = R + 2

- $ightharpoonup L_1 = \Psi^{\dagger}$, $L_2 = I$ and $L_{k+2} = \Phi_k$ for $k = 1, \dots, S$
- $f_1(\mathbf{r}_1) = \|\mathsf{W}\mathbf{r}_1\|_1$ for $\mathbf{r}_1 \in \mathbb{R}^D$
- $f_2(\mathbf{r}_2) = i_C(\mathbf{r}_2)$ with $C = \mathbb{R}_+^N$
- $f_k(\mathbf{r}_k) = i_{B_k}(\mathbf{r}_k)$ with $B_k = {\mathbf{r}_k \in \mathbb{R}^{M_k} : ||\mathbf{y_k} \mathbf{r}_k||_2 \le \epsilon_k}, k = 3, \dots, S$

Simultaneous-Direction Method of Multipliers (SDMM)

SDMM uses the following equivalent problem

$$\min f_1(\mathbf{r}_1) + \ldots + f_S(\mathbf{r}_3)$$

subject to $\mathsf{L}_k \mathbf{x} = \mathbf{r}_k$, for $k = 1, \ldots, S$

- ▶ SDMM decouples the problems for $f_1, ..., f_S$
- ▶ Subproblems optimizing $f_1, ..., f_S$ no longer involve linear operators
- Optimization based in an alternate primal-dual approach

SDMM Algorithm

```
1: Initialize \gamma > 0, \hat{\mathbf{x}}^{(0)} and \mathbf{z}_{i}^{(0)} = \mathbf{0}, i = 1, \dots, S.
  2: \mathbf{r}_{i}^{(0)} = \mathsf{L}_{i}\hat{\mathbf{x}}^{(0)}, i = 1, \dots, S.
  3: \mathbf{x}_{i}^{(0)} = \mathbf{L}_{i}^{\dagger} \mathbf{r}_{i}^{(0)}, i = 1, \dots, S.
  4: while No convergence criteria do
           \hat{\mathbf{x}}^{(t)} = (\sum_{i=1}^{S} \mathsf{L}_{i}^{\dagger} \mathsf{L}_{i})^{-1} \sum_{i=1}^{S} \mathbf{x}_{i}^{(t-1)}.
         for all i = 1, \dots, S do
  7: \mathbf{r}_{i}^{(t)} = \operatorname{prox}_{\gamma f_{i}}(\mathsf{L}_{i}\hat{\mathbf{x}}^{(t)} + \mathbf{z}_{i}^{(t-1)}).
  8: \mathbf{z}_{i}^{(t)} = \mathbf{z}_{i}^{(t-1)} + \mathbf{L}_{i}\hat{\mathbf{x}}^{(t)} - \mathbf{r}_{i}^{(t)}.
                \mathbf{x}_{\cdot}^{(t)} = \mathsf{L}_{\cdot}^{\dagger} (\mathbf{r}_{\cdot}^{(t)} - \mathbf{z}_{\cdot}^{(t)}).
               end for
10:
11: end while
12: return \hat{\mathbf{x}}^{(t)}
```


Implementation Details

Proximal operators

$$\operatorname{prox}_{\gamma f_1}(\mathbf{r}_1) = S_{\gamma}(\mathbf{r}_1) \to \operatorname{soft}$$
 thresholding $\operatorname{prox}_{\gamma f_2}(\mathbf{r}_2) = (\mathbf{r}_2)^+ \to \operatorname{thresholding}$ of negative values $\operatorname{prox}_{\gamma f_k}(\mathbf{r}_k) = \min(1, \epsilon_k / \|\mathbf{r}_k\|_2) \mathbf{r}_k \to \operatorname{scaling}, k = 3, \dots, S$

- Very simple element wise operations
- ► Can be performed in parallel!

Implementation Details

Linear system

$$\mathbf{x}^{(t)} = (\sum_{i=1}^{S} \mathsf{L}_{i}^{\dagger} \mathsf{L}_{i})^{-1} \sum_{i=1}^{S} \mathsf{L}_{i}^{\dagger} (\mathbf{r}_{i}^{(t-1)} - \mathbf{z}_{i}^{(t-1)})$$

- Solved iteratively using a conjugate gradient algorithm
- ▶ For the problem in hand $\sum_{i=1}^{S} \mathsf{L}_{i}^{\dagger} \mathsf{L}_{i} = \Phi^{\dagger} \Phi + 2\mathsf{I}$
- ▶ Bottleneck of the algorithm!
- Matrix inversion lemma can be used to accelerate the inversion of $\Phi^{\dagger}\Phi + 2I$

PURIFY

- ► PURIFY is an open-source code that provides functionality to perform radio interferometric imaging
- SDMM based solvers for the optimization problems
- Implements the following sparsity priors:
 - Daubechies orthogonal wavelets
 - Total variation
 - Sparsity averaging
- Code available at github (http://basp-group.github.io/purify/)

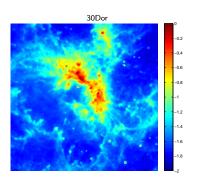
Outline

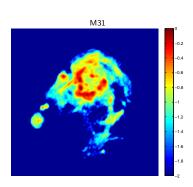
CS Signal Recovery

Large-scale Optimization

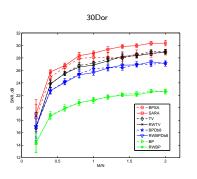
Numerical Results

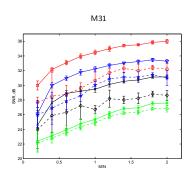
Test Images



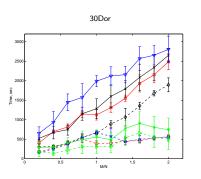


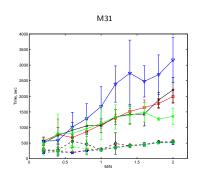
Reconstruction Quality Results





Timing Results (Not Optimized)





Outline

CS Signal Recovery

Large-scale Optimization

Numerical Results

- SARA supersedes state-of-the-art reconstruction algorithms for RI imaging
- We developed an open source code (PURIFY) to scale to the realistic setting
- Direction dependent effects can be incorporated in the model as convolutional kernels in the operator G (see next talk by Jason)
- ▶ New ways to improve the computational efficiency of the algorithm have to be explored:
 - Specialized hardware implementations
 - Distributed approaches
 - Dimensionality reduction techniques

Thank You!

