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The Scientific Problem

• The scientific problem addressed here requires precise 
measurement of the sky brightness distribution.

– Continuum science

– Wide-field polarimetry

– Spectral behaviour

– Temporal behaviour

• The goal of calibration, imaging and deconvolution therefore is to 
derive a precise model for the sky brightness

– Imaging is not inter-changeable with somehow removing the 
foreground emission (the scientific result is not in the background 
emission)

– Even where the scientific result is in the background, requirement 
will be precision measurement of the real background emission
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The Summary

• Sky brightness at low radio frequencies

• Reminder of some fundamental principles behind interferometric 
imaging based on the physics of the measurement process

– Fundamental separation of noise, signal and instrumental/atmospheric 
terms based on the physics of the measurement process

• Equivalence between DI calibration and DD corrections
– Show that Projection algorithms are in-fact a true DD generalization of DI 

calibration.  E.g., WB A-Projection == DD Band-pass calibration

• Single pointing wide-band wide-field imaging
– Projecting-out the dominant effects (PB effects)

– Results: Simulations (for understanding)

– Results: Application to real data and comparison with known facts (for 
verification)
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Sky at low frequencies: No. of sources

• PSF side-lobe at 1% level →  deconvolve sources >100μJy for 1μJy/beam RMS

• 103-4 sources per deg2  >10μJy @ >=600 MHz
– Source size distribution important at resolution < ~2”

• Implications for imaging
1. Wide-field imaging

2. HDR imaging: few X 100 mJy – 1 Jy source ~few sq. deg.

3. Deconvolution of crowded fields (same problem as deconvolution of 
extended emission)
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Sky at low frequencies: Confusion limit

1μJy/b

• σ
confusion

 ∝ ( ν-2.7/B2

max
) :  B

max
~100 Km at 200MHz for σ

confusion
 ~ 1μJy/beam

• Implications for imaging
1.Long baselines: B

max 
> 10 Km & DR > 104

2.Wide-field effects: W-term, PB effects, ionospheric effects 
3.Larger data volume

Wide-field, wide-band, high resolution, HDR imaging using large data 
volumes is a natural consequence of low frequency and high sensitivity

10 100 300 Km



6S. Bhatnagar:  CALIM 2014, Kiama, AU, March 5th 2014

Sky at low frequencies: Confusion limit

1μJy/b

• σ
confusion

 ∝ ( ν-2.7/B2

max
) :  B

max
~100 Km at 200MHz for σ

confusion
 ~ 1μJy/beam

• Implications for imaging
1.Long baselines: B

max 
> 10 Km & DR > 104

2.Wide-field effects: W-term, PB effects, ionospheric effects 
3.Larger data volume
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Point source sensitivity 1-sigma 12hr. Synthesis:
    VLA                    EVLA                   Factor
    10uJy                  1uJy                       10

Data volume:
   ~1GB                     TB                        10 4 



7S. Bhatnagar:  CALIM 2014, Kiama, AU, March 5th 2014

Principles of interferometric CAL

• Calibration model

–      is separable into antenna-based quantities

–      is not separable into antenna-based quantities

V ij =Gij W ij∫P ij  s , , t  I  s , e s.bij d s

Data DI
Terms
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Also DD

Geometry
Also DD
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Principles of interferometric CAL

• Calibration terms are necessarily separable into antenna-based 
quantities

 

• Closure quantities encodes this physics of the measurement in 
the calibration (and imaging!) process.

– Triple Product is a Good Measurable of the phase due to only the sky 
emission

• The final calibration products (one used to construct a calibrated 
image) must remain expressible as antenna-based quantities

arg  Gij G jk G ki =arg Vo
  for identical antennas

=Pancharatanam/Geometric Phase of Phyiscal Optics
(A&A, 375, 355-350, 2001)
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Principles of interferometric CAL

• Measurement noise is a Gaussian random process (Central Limit 
Theorem).     Therefore,    is the optimal estimator

• These fundamental principles, based on physics alone, lead to 
the antsol algorithm (solver engine behind DI SelfCal)

• Simple Steepest Descent iterative solver (not LM!)

• In use for the past many decades 
– See Cornwell MNRAS '81, Thompson&D'Addario Radio Sc. '82 for the first papers

– See Bhatngar & Nityananda A&A 2001 for a modification to include “pseudo closure 
terms”

– See Bhatnagar (PhD thesis) for a pedagogical derivation


2

min∑ ij∣V ij
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M
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Principles of Interferometric CAL-IM

• ME:  

• Imaging:  Solve for the coefficients of 

• Fundamental principle(s) required to enforce separation of I from
– For the Calibration-Imaging process to converge, and

– The result to be provably consistent with the truth 

1. Sky brightness is not expressible as antenna based quantities

2. Correlation-lengths in the image domain fundamentally also 
separates signal (sky brightness) from noise

V ij
Cal

= Aij I M
 Aij  ij

Aij

I M
=∑ k ck I k
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Principles of Interferometric CAL-IM

• CAL-IM algorithms obeying these principles can solve ME of type

● Another model to describe the measurements

● No constraints on solvers mixing terms with incompatible physics
● Formulation inconsistent with the basic physics of the measurement process

● Measurements are corrupted by strictly antenna-based quantities
● i.e., hard to imagine a solver which also obeys the physics of observation

V ij=Gij F [ c0 I 0 c1 I1 ... ] ij

V ij=F [ Gij , 0 c0 I 0Gij , 1c1 I1 ...] ij
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Principles of Interferometric DD CAL-IM

● Therefore, we include all calibration terms, even if DD, in the ME as
● Antenna-based term(s)
● Fundamentally separate from parameters that model the sky brightness

1. Solvers generalized for DD calibration without violating Closure Principle (e.g. 
Pointing SelfCal)

2. Deconvolution algorithms designed to not mix instrumental/atmospheric terms 
and sky brightness model (e.g. RMSynth, MS-MFS)

3. Combined DD-correcting image deconvolution algorithms obey the fundamental 
principles: designed which converge to results that are provably consistent with 
the truth (e.g. Projection+MS-MFS) 

V ij=Gij F Mij [ c0 I 0c1 I1 ...] ij
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Equivalence between DI and DD terms

• ME with DI terms

• ME with DD terms

V ij
Obs

= [ J i⊗J j
∗ ] . [V ij

o ] = [Mij
DI ] . [ V ij

o ]

V ij
Obs

= [ Ei∗E j
∗ ] . [V ij

o ] = [Mij
DD ]∗ [V ij

o ]

[
V pp
Obs

V pq
Obs

V qp
Obs

V qq
Obs ] = [

M 11 M 12 M 13 M 14

M 21 M 22 M 23 M 24

M 31 M 32 M 33 M 34

M 41 M 42 M 43 M 44
] . [
V pp
o

V pq
o

V qp
o

V qq
0 ] Diagonal: “pure” poln. products

Off-diagonal: Include poln. leakage 

● DI Mueller:  Outer product of two antenna-based terms
● DD Mueller: Outer convolution of two antenna-based terms (ApJ, 2013)

● DI operator:  Matrix multiplication
● DD operator: Matrix multiplication algebra with convolutions
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Equivalence between DI/DD corrections

• Full-pol DI correction

• A-Projection (and related) algorithms:  Full-pol DD correction
– Generalization of DI correction

• Projection algorithms are a DD generalization of the DI calibration

V ij
Corr

= [M ij
DI−1 ] . [V ij

Obs ] =
adj M ij

DI 

det M ij
DI

. [V ij

Obs ]

Equivalent Complex math.:Gi
−1
=
G∗

∣G∣2

V ij
Corr

= [Mij
DD−1

]∗ [V ij
Obs ] =

adj M ij
DD

det M ij
DD

∗ [V ij

Obs ]
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Equivalence between DI/DD corrections

• DI Jones Matrix:  Each term is a complex gain (a number)
– Receiver gains and polarization leakages

• DD Jones Matrix: Each term is a complex gain pattern (a 2D 
function)

– Antenna off-axis gains and polarization leakages

J i = [ G p −D pq

Dq p Gq ]

Ei =

PBRR

PBRR

Off-axis leakage

Off-axis leakage
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All PB effects together
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Projection algorithms=DD corrections

• DD corrections cannot be done independent of imaging
– But the imaging algorithms must fundamentally (explicitly) separate them 

from sky-brightness parameters

• Projection algorithms project-out DD effects as part of the 
transform to image domain 

ICorr =
F∑ ij [ adj Mij

T ]∗ [V ij
Obs ]

F∑ ij
det M ij 

During Imaging

Image plane normalization

V ij
Corr

=
adj M ij

DD

det M ij
DD

∗ [V ij
Obs ]
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DD Corrections: Projection Algorithms

• Construct an operator X which projects-out the undesirable 
effects of A?

• W-Projection: X is the conjugate of the w-term

• A-Projection:  X is the polarization conjugate of the PB term
– Does not project-out WB effects of the PB (A&A, 2008)

X ij V ij
DI−Cal

= X ij Aij V True

such that  X ij Aij = 1
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PB Polarization Effects

A-Projection

Stokes-V Images  (“Narrow band”)
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Instrumental frequency dependence

• Continuum imaging

• Antenna PB (                     )

– Frequency dependence

I continuum
=∫P ij  s , , t  I  s , d 

The P
ij
 s , , t 

PB Freq. dependence
(blue curve)
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Instrumental frequency dependence

Pulsar Sp. Ndx -3.0

Artificially steep
Spectral Index
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Wide-Band AW-Projection

• Construct X such that it is also a frequency-conjugate for PB

• Correct for PB effects + W-term

– Polarization: Squint + in-beam polarization

– Time variability: Rotation with Parallactic Angle

WB A-Projection Effective PB

PB Frequency dependence
(blue curve)
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Wide-Band AW-Projection

 PB  PB 
∗


PB  

F
re

qu
en

cy
 a

lo
ng

 t
he

 a
ni

m
at

io
n 

 a
xi

s

A
ni

m
at

io
n 

ax
is

: S
pe

ct
ra

 a
lo

ng
 a

 r
ad

ia
l s

lic
e

Aij ∗
 where

∗
= 2  ref

2
−

2

DD Bandpass

Effective DD Bandpass
With WB A-Projection 



24S. Bhatnagar:  CALIM 2014, Kiama, AU, March 5th 2014

WB AW-Projection + MT-MFS
● Simultaneously account for the PB effects and frequency dependence of the sky
    Separation of instrumental calibration and sky brightness terms:

● PB effects corrected by WB A-Projection
● PB-corrected image used in MT-MFS for model the frequency dependence 

of the sky brightness

MFS+SI

MT-MFS+
A-Projection

MT-MFS+
WB A-Projection

MT-MFS+SI

Ap.J., 2013
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Wide-Band AW-Projection + MT-MFS

ApJ, 2011, 2013

Pulsar Sp. Ndx -3.0 Pulsar Sp. Ndx -0.29

● Results verifiable consistent with the truth  

  Intensity weight Spectral Index Map
  Wide-field Spectral Index maps comes out in the wash correctly

Artificially steep (due to PB)

2011 2013
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The Conclusion

• Wide-band, wide-field, high dynamic range imaging is a natural 
consequence of high sensitivity imaging at low radio frequencies

– Large data and large images is also a natural consequence

• Fundamental principles behind interferometric imaging based on 
the physics of the measurement process

– Algorithms must show that they obey closure relations

– Algorithms must obey fundamental separation of signal, noise and calibration 
parameters

• Projection algorithms are true DD generalization of DI corrections
– NB A-Projection is the DD equivalent of DI gain correction

– WB A-Projection is the DD equivalent of DI bandpass correction

– Possible to invent DD solvers which can be shown to obey physics principles

• Single pointing wide-band wide-field imaging
– WB A-Projection  + MT-MFS: Verified with simulations and real data

– Further work in progress to test other terms
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Imaging with the EVLA @ L-Band

Intensity-weighted Sp. Ndx. Map

Single pointing, narrow field, wide-band image
(Owen, Rau)

Wide-band mosaic+Single Dish
Working on Stokes-I + Sp.Ndx. mapping
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