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ABSTRACT
The natural spherical projection associated with the Hierarchical Equal Area and isoLatitude
Pixelisation,HEALPix, is described and shown to be one of a hybrid class that combines
the cylindrical equal-area and Collignon projections, not previously documented in the car-
tographic literature. Projection equations are derived for the class in general and are used to
investigate its properties. It is shown that the HEALPix projection suggests a simple method
(a) of storing, and (b) visualising data sampled on the grid of the HEALPix pixelisation, and
also suggests an extension of the pixelisation that is better suited for these purposes. Poten-
tially useful properties of other members of the class are described, and new triangular and
hexagonal pixelisations are constructed from them. Finally, the standard formalism is defined
for representing the celestial coordinate system for any member of the class in the FITS data
format.

Key words: astronomical data bases: miscellaneous – cosmic microwave background – cos-
mology: observations – methods: data analysis, statistical – techniques: image processing

1 INTRODUCTION

The Hierarchical Equal Area and isoLatitude Pixelisation,
HEALPix (Górski et al. 1999, 2005), offers a scheme for distribut-
ing 12N2(N ∈ N) points as uniformly as possible over the surface
of the unit sphere subject to the constraint that the points lie on a
relatively small number (4N − 1) of parallels of latitude and are
equispaced in longitude on each of these parallels. These proper-
ties were chosen to optimise spherical harmonic analysis and other
computations performed on the sphere.

In fact, HEALPix goes further than simply defining a distri-
bution of points; it also specifies the boundary between adjacent
points and does so in such a way that each occupies the same area.
Thus HEALPix is described as anequal area pixelisation. Pixels at
the same absolute value of the latitude have the same shape in the
equatorial region, though pixel shape differs between latitudes, and
with longitude in the polar regions. The boundaries forN = 1 de-
fine the 12base-resolution pixelsand higher-order pixelisations are
defined by their regular subdivision. Note, however, that although
they are four-sided, HEALPix pixels are not spherical quadrilater-
als because their edges are not great circle arcs.

HEALPix was originally described purely with reference to
the sphere, the data itself being stored as a one-dimensional ar-
ray in a FITS binary table (Cotton, Tody & Pence 1995) with
either ring or nestedorganisation, the former being suited for
spherical harmonic analysis and the latter for nearest-neighbour
searches. For visualisation purposes the software that implements
HEALPix (Górski et al. 1997) offers a choice of four conven-
tional projection types onto which HEALPix data may be regrid-
ded.
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Figure 1. The HEALPix class of projections forH = 1,2,3 rescaled to unit
area (top), and the nominative case withH = 4 (bottom) at×4 the areal scale
and with the top left-hand corner of the graticule “cut away” to reveal the
underlying cylindrical equal-area projection in the equatorial region. Facets
are shown as dashed diamonds.

The mathematics underlying HEALPix is based on mapping
each of the twelve base-resolution pixels onto a [0,1] × [0,1] unit
square, and this was always an essential feature implemented in the
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HEALPix software. Roukema & Lew (2004) have re-derived the
pertinent equations and present a diagram showing a projection of
the whole sphere (hereinafter theHEALPix projection) in which the
base-resolution pixels, and consequently the pixels of all higher-
order pixelisations, are projected as diamonds (i.e. squares rotated
by 45◦). These equations may readily be synthesised into those of
an equal area projection of the whole sphere.

The HEALPix projection is a combination of a cylindrical
equal-area projection in the equatorial region and an interrupted
Collignon projection in the polar regions (Collignon 1865; Tissot
1881; Lutque & Matarazzo 2004). This hybrid does not appear to
have been documented previously in cartography texts and could
not be located in a web search; in particular, it is absent from Syn-
der’s (1993) review of the history of cartography. Illinois State Uni-
versity’s MicroCAM web site presents a catalogue of 320 map pro-
jections produced by a member of the International Cartographic
Association’s Commission on Map Projections (Anderson 2003);
none bear an obvious resemblance. Of these, the equal-area quad-
cube may be dissected and rearranged to produce something with
a similar boundary but it is a distinctly different projection. The
stated intention of this web site is to present as complete a collec-
tion as possible of historical, published map projections.

This work will show that the HEALPix projection is one of the
more important members of an infinite class of projections param-
eterised byH ∈ N and will derive the projection equations for the
class. In particular, the HEALPix projection (i.e. withH = 4) sug-
gests a simple way of storing HEALPix data on a two-dimensional
square grid as used in conventional imaging and mapping, and also
suggests an extension of the HEALPix pixelisation that is better
suited to this. The HEALPix projections withH = 3, and 6 are also
shown to be special, their properties will be discussed, and new
hexagonal and triangular pixelisations constructed from them.

The related issues of representing celestial coordinates in the
HEALPix projection are also considered in relation to image data
storage in FITS (Hanisch et al. 2001).

2 THE HEALPIX PROJECTIONS

Figure 1 shows the first four members (H = 1, . . . ,4) of the
HEALPix projections. They may be described as interrupted, equal
area, pseudo-cylindrical projections whose defining characteristics
are

(i) They are equiareal; regions with equal areas on the sphere
have equal areas in the plane of projection.

(ii) Parallels of latitude are projected as horizontal straight lines
(interrupted in the polar regions) whence∂2/∂φ = 0.

(iii) Parallels are uniformly divided (apart from interruptions).
(iv) The interruptions are defined by stacking equal-area dia-

monds (hereinafterfacets) as shown in Fig. 1. The facet that strad-
dles±180◦ is split into halves in the graticule,

where we use (φ, θ) for longitude and latitude respectively, and
(x, y) for Cartesian coordinates in the plane of projection.

These projections correspond to (Nφ,Nθ) ≡ (H,K) with K = 3
in the genre of isolatitude pixelisations described by Górski et al.
(2005). Projections associated with other values ofK are readily de-
rived but are only considered peripherally here, though the general
equations are cited in Sect. 6. It is interesting to note that the case
with (H,K) = (2,1) is the interrupted, symmetrical form of Col-
lignon’s projection as illustrated in Fig. 2. See also Furuti’s (2006a)
web site which presents geographic outlines.

2.1 HEALPix derivation

In the equatorial regions, the HEALPix projection is based on Lam-
bert’s (1772) cylindrical equal area projection whose equations are
well known. While Collignon’s (1865) derivation of the equations
used in the polar region was based on geometry, here we offer a
mathematical derivation based on integrating the Jacobian determi-
nant.

In deriving the projection equations, note firstly that for anyH
the total area occupied by the half-facets in the north polar region
is always 1/6 of the total area. Since the projections are equiareal,
we equate the area of a spherical cap on the unit sphere,A = 2π(1−
sinθ), with the corresponding fraction of the total area, 4π/6, to
obtain the transition latitude,θ×, which is independent ofH:

θ× = sin−1(2/3) ≈ 41.◦8103. (1)

2.1.1 Equatorial region

The equatorial region, where| θ | ≤ θ×, is clearly a cylindrical equal-
area projection, i.e. (x, 2) = (φ, α sinθ), whereα is a constant de-
termined by the requirement thatθ× be projected at the vertex of a
facet. Since the length of a facet diagonal, e.g. as measured along
the equator, is 2π/H, we have2× = π/H = α sinθ×, whence

x = φ, (2)

2 =
3π
2H

sinθ. (3)

Because∂2/∂φ = 0 for the HEALPix projections the Jacobian
determinant reduces to

J(φ, θ) =
1

cosθ
∂x
∂φ

∂2

∂θ
· (4)

This gives the ratio of an infinitesimal area in the plane of pro-
jection to the corresponding area on the sphere. In the equatorial
regions it is 3π/2H, a constant, indicative of an equiareal projec-
tion. Note that the Jacobian determinant is inversely proportional
to H, but the graticules in the top part of Fig. 1 were set to the
same areal scale by scaling bothx and2 by

√
H. Likewise, the re-

maining graticule, and all others in this paper including Fig. 2, were
produced at a consistent areal scale×4 greater than these first three.

2.1.2 Polar regions

In the polar regions the area north ofθ (> θ×) on the unit sphere
is 2π(1− sinθ) and, noting that the pole is projected at2 = 2π/H,
in the plane of projection it isH(2π/H − y)2. Equating the ratio
of these to the value of the Jacobian determinant obtained for the
equatorial region and solving we obtain

2 = ±
π

H
(2− σ), (5)

where the negative sign is taken for the south polar region, and

σ =
√

3(1− | sinθ | ) (6)

is the ratio of the distance of the pole from the parallel ofθ to that
of the pole from the parallel ofθ×.

The equation forx may be obtained readily by integrating
Eq. (4) with∂2/∂θ from Eqs. (5) & (6) to producex = σφ + C,
whereC is the constant of integration, thus indicating that the par-
allels are uniformly divided. It is instructive also to consider a ge-
ometrical argument; the area of any triangle in the (x, y) plane with
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Figure 2. Édouard Collignon’s (1865) projections at equi-areal scale: (top) Collignon’s projection of the sphere in an isoceles triangle; (bottom left) the
northern hemisphere folded about the equator into the south to create a rhombus, rescaling× 1

2 in longitude (or× 1√
2

and in latitude×
√

2 to preserve the areal

scale) would produce the HEALPix projection with (H,K) = (1,1); (bottom right) the rhombic case interrupted along the prime meridian and recentred to map
each hemisphere onto a square - this corresponds to the HEALPix projection with (H,K) = (2,1). These and the remaining graticules in this paper are shown
at the same areal scale as the bottom panel of Fig. 1 (H = 4 case).

its apex at the pole and base along a given parallel of latitude de-
pends only on the change inx between its base vertices and not on
their location. Since the projection is equiareal,x must therefore
vary linearly withφ.

Applying the interruptions to the parallels (this in fact could
be omitted or done in other ways to produce different projection
types) we have

x = φc + (φ − φc)σ, (7)

where

φc = −π +

(
2

⌊
(φ + π)H

2π

⌋
+ 1

)
π

H
(8)

is the native longitude in the middle of a polar facet andbuc , the
floor function, gives the largest integer≤ u.

2.2 Properties

The most important feature of the HEALPix projections, indeed
the underlying rationale for the HEALPix pixelisation, is that they
are equiareal with squared boundaries and straight parallels. Thus
they may be completely inscribed by diamonds of equal area, the
minimum number of which is 3H (the facets). Each facet is sub-
ject to further subdivision byN2 smaller equal-sized diamonds that
are identified aspixels(picture elements); their centre positions in
(φ, θ) may be computed readily for any (H,N) from the inverse of
the above projection equations as are cited in Sect. 6. As explained
by Górski et al. (2005), it is significant for spherical harmonic anal-
ysis that the pixel centres lie on a relatively small number of paral-
lels of latitude, and that the facets may be subdivided hierarchically.

Of course a pixelisation may be constructed similarly from
a cylindrical equal-area projection, but the HEALPix projections

are much less distorted in the polar regions than any such projec-
tion. Consequently the HEALPix pixels are truer in shape when
projected onto the sphere and their centres are more uniformly dis-
tributed. As shown by the dashed lines in the upper-left corner of
Fig. 1, the equivalent portion of the underlying cylindrical projec-
tion, being severely squashed at the pole, is stretched upwards to
twice its height and brought to a point; the pole itself is thereby
projected asH points rather than a line. However, this is gained at
the cost of introducingH − 1 interruptions which should properly
be considered as extreme distortions, though of little consequence
for the pixelisation.

Evaluating the partial derivatives we find(
∂x
∂φ
,
∂2

∂θ

)
=


(
1, 3π

2H cosθ
)
. . . equatorial,(

σ, 3π
2H

cosθ
σ

)
. . . polar,

(9)

which shows that in the polar regionsx is scaled directly, and2 is
scaled inversely byσ = σ(θ) in order for the Jacobian determinant
to maintain constancy.

To get some idea of the relative degree of distortion between
members of the class, consider first from Eqs. (3) & (5) that2 scales
as 1/H for anyθ, while x is independent ofH except for defining
the interruptions. Hence the relative spacing of parallels between
the equator and poles is independent ofH, as is evident in Fig. 1,
and the distortion is determined solely by the relativey : x scaling.
Thus theH > 1 projections may be considered to be composed of
H rescaledH = 1 projections in sequence.

A spherical projection isconformal or orthomorphic (true
shape) at points where the meridians and parallels are orthogonal
and equiscaled. The general equations of the cylindrical equal area
projection expressed in terms of the conformal orstandardlatitude,
θ◦, are (x, 2) = (φ, sinθ/ cos2 θ◦) (e.g. see Sect. 5.2.2 of Calabretta
& Greisen 2002), whence from Eq. (3)

c© 2007 RAS, MNRAS000, 1–8
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Figure 3. Tissot indicatrices on a 15◦ graticule for a representative portion
of the HEALPix projections withH = 3,4 & 6 at consistent areal scale. The
rescaledH = 6 & 3 projections associated with the triangular and hexagonal
pixelisations discussed in Sects. 4.1 and 4.2 are also shown at the same areal
scale. Thus all indicatrices have the same area.

θ◦ = cos−1

√
2H
3π
· (10)

For H = 1,2,3,4 this is (63◦,49◦,37◦,23◦); the first two of these
exceedθ× and hence are inadmissible, andθ◦ is undefined for
higher values ofH. Since the latitude that halves the area of the
equatorial region is sin−1(1/3) = 19.◦5, independent ofH, this sug-
gests that the projection withH = 4 is the least distorted in the
equatorial regions.

Looking at it another way, the requirement for equiscaling in
x andy where the meridians and parallels are orthogonal, i.e. ev-
erywhere in the equatorial region, and along the centreline in the
polar half-facets, is

1
cosθ

∂x
∂φ
=
∂2

∂θ
· (11)

Substituting Eq. (9) gives

H◦ =


3π
2 cos2 θ . . . equatorial,
π
2 (1+ | sinθ |) . . . polar, centreline,

(12)

whence H◦ = (4.7,4.4,3.5,2.6,2.7,2.9,3.1,3.1) for θ = (0,
15◦,30◦, θ×,45◦,60◦,75◦,90◦). ThusH = 4 is a good all-over com-
promise but for| θ | > 30◦, the latitude that halves the hemisphere
by area,H = 3 would appear to be better on this basis.

The nature of the projective distortion in the region where
meridians and parallels are not orthogonal is more complicated and
is best illustrated by means of Tissot’s indicatrix (e.g. Snyder 1993;
or Furuti 2006b). This is the projection, greatly magnified, of an
infinitesimal circle on the sphere, as in Fig. 3. In the polar regions
the projection of the facets onto the sphere (i.e. the base-resolution
pixels) meet at the pole at 360◦/H. ForH = 4 this is 90◦ which ac-
cords with the angle in the plane of all HEALPix projections. Thus
it might seem thatH = 4 should be least distorted in the neighbour-
hood of the pole. However, this argument is somewhat misleading;
on the sphere the angle between meridians and parallels along the
edges of the polar half-facets is always 90◦, while in the plane of
projection it is always 45◦. Tissot’s indicatrix shows thatH = 3 is
actually less distorted near the pole.

Tissot’s indicatrix also indirectly describes the deformation of
the HEALPix pixels themselves. On the sphere the indicatrices are
all circles of the same size, whereas on the plane the pixels are all
same-sized squares. If the projected Tissot ellipse at the centre of a
pixel was rescaled into a circle by compressing its major axis while
expanding its minor axis so as to preserve area then the square pixel
boundary would become a parallelogram, representative, to first or-
der, of the pixel’s shape on the sphere.

Recently Goldberg & Gott (2006) have developed global-
average distortion measures for isotropy,I , and area,A, that de-
pend on the map projection metric (I = 0 for conformal projec-

Table 1. Isotropy, area, flexion, skewness, distance and boundary distortion
measures for the HEALPix projection, and the overall distortion measure
Σε , for a selection ofH, K andy-rescaling. Measures that equal or improve
upon (i.e. are less than) those of the (H,K) = (4,3) projection are shown
in bold. The measures are also computed separately for the equatorial (|θ| ≤

30◦) and polar regions for the (3,3) and (4,3) projections (italics).

H , K yscl I A F S D B Σε

1 , 1 1 1.17 0 0.70 0.74 0.38 0.25 9.68
2 , 1 1 0.65 0 0.56 0.48 0.48 0.50 8.19
3 , 1 1 0.60 0 0.47 0.39 0.55 0.75 12.81

2 , 2 1 0.50 0 0.58 0.42 0.41 0.42 6.19
3 , 2 1 0.39 0 0.49 0.31 0.45 0.58 7.90
4 , 2 1 0.49 0 0.43 0.27 0.50 0.75 11.82
5 , 2 1 0.65 0 0.37 0.25 0.54 0.92 17.02

2 , 3 1 0.72 0 0.66 0.48 0.38 0.38 6.76
3 , 3 1 0.42 0 0.57 0.33 0.40 0.52 6.85

0.37 0 0.29 0.12 0.42 0.52 Equ.
0.45 0 0.86 0.53 0.54 0.52 Pol.

4 , 3 1 0.36 0 0.51 0.27 0.44 0.65 9.09
0.11 0 0.28 0.10 0.43 0.65 Equ.
0.50 0 0.75 0.45 0.57 0.65 Pol.

5 , 3 1 0.46 0 0.47 0.26 0.47 0.79 12.52
6 , 3 1 0.60 0 0.44 0.26 0.50 0.92 16.82
7 , 3 1 0.73 0 0.40 0.25 0.53 1.05 21.78

3 , 4 1 0.56 0 0.64 0.37 0.38 0.48 6.99
4 , 4 1 0.40 0 0.58 0.30 0.41 0.60 8.18
5 , 4 1 0.39 0 0.54 0.27 0.43 0.71 10.50
6 , 4 1 0.48 0 0.50 0.26 0.46 0.83 13.60

6 , 2
√

3 0.31 0 0.44 0.26 0.48 1.08 20.94
6 , 3

√
3 0.27 0 0.54 0.27 0.42 0.92 15.57

6 , 4
√

3 0.41 0 0.61 0.30 0.39 0.83 13.45

3 , 3 1√
3

0.59 0 0.48 0.31 0.48 0.52 7.59

tions andA = 0 for equiareal projections), and also the larger-scale
measures of flexion (or bending),F, and skewness (or lopsided-
ness),S, which are based on the derivatives of the metric. They
combine these with the global measure of distance error,D, de-
veloped by Gott et al. (2006), with a contribution from boundary
discontinuities,B, to derive an overall distortion measure for the
projection,Σε . The authors kindly provide a code, usable in either
IDL © (Interactive Data Language) or GDL (GNU Data Language),
to allow others to compute these measures via a Monte Carlo anal-
ysis and we have applied it to the HEALPix projection. Results are
presented in Table 1 for a variety of parametersH andK and ad-
ditional y-scaling, as for the triangular and hexagonal pixelisations
discussed in Sects. 4.1 and 4.2.

For a pixelisation the relevant measures areA, which is zero
for all HEALPix projections, and the mean isotropy,I . Like the
Tissot indicatrices,I indicates how distorted the pixels are. Of the
square (non-rescaled) pixelisations (H,K) = (4,3) achieves the
lowest global mean value ofI = 0.36 with several others close be-
hind. The associated projection also does well for the other distor-
tion measures, though it falls behind onΣε – the overall distortion
measure is strongly influenced byB, the total length of boundary
discontinuities, which favours smallerH and largerK.

The distortion measures were computed separately for|θ| ≤

30◦ and|θ| > 30◦ for the (3,3) and (4,3) projections, where 30◦ was
chosen in light of the discussion following Eq. 12. As anticipated,
the (3,3) projection does slightly better in the polar region but not
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Figure 4. The HEALPix pixelisation forN = 6 on the HEALPix projection
for H = 4 projected with a 45◦ rotation onto the mapping grid showing the
twelve facets with standard numbering. The graticule of the HEALPix pro-
jection is shown in the seven facets adjacent to (φ, θ) = (0,0), and those at
lower left show the pixel boundaries forN = 6 as defined by the HEALPix
pixelisation.

as well near the equator. However, its global mean isotropy is not
far behind the (4,3) projection and it does better on a number of
other measures to produce a lowerΣε .

With rescaling, the lowest value ofI is achieved by (H,K) =
(6,3) with y rescaled by

√
3. Its other distortion measures are also

low with the exception ofB, the boundary discontinuity, which in-
flatesΣε . This projection is the basis of the triangular pixelisation
discussed in Sect. 4.1.

3 THE HEALPIX GRID

The base-resolution pixels of the HEALPix pixelisation are pro-
jected as diamonds (squares rotated by 45◦) on the HEALPix pro-
jection with the consequence that the pixel locations fall on a grid
with diamond-symmetry.

However, Fig. 4 shows that the diamond grid may trivially
be converted to the common square grid used in imaging via a
45◦ rotation. HEALPix data may thus be displayed directly on the
HEALPix projection without regridding and the potential introduc-
tion of artefacts. At 48% the resulting image plane is slightly less
than half-filled but this is comparable to the figure of 50% for quad-
cube projections (O’Neill & Laubscher 1976) which are commonly
used in the same type of application as HEALPix. Moreover, being
composed of square facets like the quad-cubes, the HEALPix pro-
jection also admits the possibility of dissection and storage on a
third image axis, such as is implemented for the quad-cubes via the
CUBEFACE keyword in FITS (Calabretta & Greisen 2002).

Facet number 6 which straddlesφ = ±180◦ may be treated
in a number of ways; it may be left split, or the halves may be
reconnected in either the lower-left or upper-right corner, or it may
be replicated in both.

The butterfly projection, the polar variant of Fig. 4 (Stuart
Lowe, private comm. 2007), is created by splitting the equatorial
facets along the 0◦ and±90◦ meridians, rotating the three resulting
gorescontaining facets 0, 1 and 2 by appropriate multiples of 90◦,
and joining them at the pole to produce an× or “butterfly”-shaped
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Figure 5. HEALPix double-pixelisation forN = 3 on the HEALPix pro-
jection withH = 4. Filled circles define the regular grid, with interpolated
pixels shown as open circles to the east (leftwards) of these. Pixel bound-
aries are shown in the middle three facets, those of the two additional polar
pixels contain a contribution from each of the four adjacent polar facets.
One of the eight inside corner pixels with 3/4 area is arrowed. Note the dif-
ference between the pixel locations in this figure compared to theN = 6
pixelisation in Fig. 4. Also illustrated in grey is the boundary between the
faces of the pseudo-quadcube layout of the HEALPix projection, applicable
for (H,K) = (4,3) only.

layout. This achieves a 75% filling factor of the enclosing square,
now reduced to 4× 4 facets.

3.1 HEALPix double-pixelisation

The main drawback with the above technique for storing HEALPix
imaging data is that the image is presented at an unusual orienta-
tion. However, this may be solved via a simple extension to the
HEALPix pixelisation. Figure 5 shows the HEALPix grid with a
pixel interposed between every pair of pixels along the parallels
of latitude and additional pixels added at the two poles. The total
number of pixels in the pixelisation is thereby increased from 12N2

to 24N2 + 2 without affecting the special properties described by
Górski et al. (2005), although requiring a slightly different method
of forming the hierarchy and indexing it.

Pixels that fall along the lines where the polar half-facets meet
act to “zip” the two edges together. They still have equal area of
4π/24N2 sr on the sphere, half that of the standard HEALPix pix-
els, except for the eight pixels in the inside corners. As can be seen
in Fig. 5, the latter are incomplete, with only 3/4 of the area, and
consequently are three-sided when projected onto the sphere. Col-
lectively their reduced area offsets the contribution from the extra
two pixels at the poles.

The pixel index of an interpolated pixel is obtained by adding
0.5 to the HEALPix pixel index (in the ring or nested scheme) of the
standard pixel immediately to the west of it (rightwards in Fig. 5).
All pixel indexes are then doubled and incremented by unity so that
they run from 0 to 24N2 + 1 with the first and last at the poles.

The filling factor for this, as of any of the HEALPix pro-
jections in the normal orientation, is 75% which exceeds that of
the quad-cubes at 50% and is comparable to that of the oft-used
Hammer-Aitoff projection at 79%.

Figure 5 shows how the facets of the double-pixelisation
may be repartitioned into a configuration that resembles that of a
quad-cube projection and by which it becomes amenable to the
CUBEFACE storage mechanism. However, the resemblance is purely

c© 2007 RAS, MNRAS000, 1–8
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Figure 6.HEALPix projection forH = 6 scaled in2 by
√

3 whereby the di-
amond facets become pairs of equilateral triangles - the new base-resolution
pixels. These may then be subdivided hierarchically; base-level pixels are
shown to the left and right (black circles), the first level of subdivision is at
mid-top (thin black), the next at mid-bottom (grey).

superficial because the cubeface edges do not match those of a
quad-cube projection on the sphere.

4 OTHER PIXELISATIONS

Consider dividing the 360◦ of circumpolar longitude into integral
subdivisions. Of the possible ways of doing this (1× 360◦,2 ×
180◦,3×120◦,4×90◦,5×72◦,6×60◦, . . .) only the divisions into 3,
4, and 6 correspond to regular polyhedra. The division into 4× 90◦

corresponds to the familiar case of HEALPix withH = 4 with dia-
monds tessellated by diamonds.

4.1 Triangular – H = 6

However, the division into 6× 60◦ suggests a different type of pix-
elisation in which equilateral triangles are tessellated by equilat-
eral triangles. This pixelisation may be defined by rescaling the
HEALPix projection with H = 6 by

√
3 in 2 so that the half-

facets become equilateral triangles. Such a linear scaling does
not affect the projection’s equal area property. What were previ-
ously half-facets may now be identified with 36 new, triangular
base-resolution pixels that may be subdivided hierarchically as for
HEALPix, as depicted in Fig. 6. It is interesting to note that this
subdivision is naturally hierarchical – the number of pixels varies
exponentially as 36× 4N−1 whereN is the hierarchy level. In the
H = 4 pixelisation the exponential hierarchy must be engineered
by doublingN at each level.

The conformal latitude computed forH = 6 with this ex-
tra 2-scaling is θ◦ = 31.◦0, indicating that the projection be-
comes conformal near the latitude that bisects the hemisphere by
area. Applying Eq. (12) with the extra scaling gives

√
3H◦ =

(8.2,7.6,6.1,4.5,4.6,5.1,5.3,5.4) for θ = (0,15◦,30◦, θ×,45◦,
60◦,75◦,90◦), again indicating less distortion in the polar regions
thanH = 4. Tissot’s indicatrix in Fig. 3 clearly shows that it also
does better in the polar zone away from the centreline because the
60◦ angle along the edge of the polar facets more closely matches
the true angle of 90◦ on the sphere. Overall, this pixelisation per-
forms adequately at low latitudes and does better than theH = 4
pixelisations at mid to high latitudes.

This rescaling of theH = 6 projection is reminiscent of
Tegmark’s (1996) icosahedral projection composed of 20 equilat-
eral triangles; the problem of indexing the subdivisions of its trian-
gular facets was solved in the implementation of the corresponding
pixelisation. In the present context the isolatitude property is still
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Figure 7. HEALPix projection forH = 3 scaled in2 by 1/
√

3 whereupon
it becomes three consecutive hexagons - the new base-resolution pixels;
the original diamond facets, now squashed (dashed lines), are superfluous.
The graticule of the projection is shown in the left-hand hexagon, whereas
those to the right of it show the second (thin black) and third (grey) level of
subdivision - each hexagon splits into four non-inscribed hexagons, some
of which are shared between two base-resolution pixels as indicated by the
arrow.

present but degraded somewhat from the diamond pixelisation of
H = 4. However, if the pixel centres are moved up or down from
the centroid by1

12 of the height of the pixel to the point half-way
between the base and apex then they fall onto a rectangular grid
sampled more frequently inx than y. This provides some of the
same benefits as theH = 4 double-pixelisation.

Although the displacement is small, there is a possibility that
it could introduce statistical biases so the full consequences should
be investigated for a particular application. These potential biases
may be minimised by making the pixel size sufficiently small, and
the fact that the bias between adjacent pairs of pixels is in opposite
senses will tend to cancel them over a region encompassing a suffi-
cient number of pixels. It should also be remembered that although
the pixel locationsappearto be at the centre of the pixel boundary
in the projection of the diamond, square, and triangular pixelisa-
tions this is very much an artefact of the distortions inherent in the
projection. Because the2-coordinate varies non-linearly withθ, on
the sphere they are actually biased to one side of the pixel. Hence
some degree of bias is unavoidable.

4.2 Hexagonal –H = 3

The division into 3× 120◦ suggests hexagonal base-resolution pix-
els. Although the familiar “honeycomb” structure shows that it is
possible to tile the plane with hexagons, nevertheless there is no
bounded tessellation of hexagons by hexagons; that is, no hexago-
nal region larger than the cell size can be cut out of any honeycomb
tessellation without cutting the individual cells. Thus it may seem
surprising that a hexagonal pixelisation can be constructed from the
HEALPix projection forH = 3 with 2 scaled by 1/

√
3. The bound-

ary of this projection, as seen in Fig. 7, is reduced to that of three
sequential hexagons and this boundary is then used conceptually
as a “pastry-cutter” on a honeycomb tessellation of the right scale.
Pixels that are cut can be made whole again by borrowing from
adjacent facets, much as the square pixelisation in Fig. 5 does.

The hierarchical pixelisation, somewhat more complicated
than for the other cases, is shown in Fig. 7. Like the triangular
pixelisation the number of pixels at each level also varies exponen-
tially, as 3×4N−1. A subdivision of each hexagon into six equilateral
triangles is possible but the resulting pixelisation does not satisfy
equiscaling in longitude.

Rescaling Eq. (12) givesH◦/
√

3 = (2.7,2.5,2.0,1.5,1.5,

c© 2007 RAS, MNRAS000, 1–8
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1.7,1.8,1.8) for θ = (0,15◦,30◦, θ×,45◦,60◦,75◦,90◦). Thus the
rescaledH = 3 projection does not achieve conformality at any lati-
tude, it does well close to the equator, but degrades at mid-latitudes.
In the polar regions the 30◦ angle between meridians and parallels
along the edge of the facets is further from the ideal of 90◦ than the
45◦ angle for the unscaled projections. However, it may be optimal
for certain values of the total number of pixels in the pixelisation.

5 K , 3

The projection equations for general values ofK are cited in Sect. 6.
The general form of the Jacobian determinant isJ(φ, θ) = πK/2H
and the generalisation of Eq. (12) becomes

H◦ =


πK
2 cos2 θ . . . equatorial,
π
2 (1+ | sinθ |) . . . polar, centreline.

(13)

This demonstrates thatH◦ is independent ofK along the centre-
line of the polar half-facets and its variation between equator and
pole may thus be reduced by choosingK appropriately. ForK = 2
we find H◦ = (3.1,2.9,2.4,2.7,2.9,3.1,3.1) for θ = (0,15◦, θ× =
30◦,45◦,60◦,75◦,90◦), and this carries over in particular to the tri-
angular pixelisation. However, it comes at the cost of reducingθ×
to 30◦ thereby increasing the portion of the sphere in the polar half-
facets away from the centreline.

6 HPX: HEALPIX IN FITS

In this section the HEALPix projections are described in the same
terms as the projections defined in Calabretta & Greisen (2002).

HEALPix projections will be denoted1 in FITS with algorithm
codeHPX in the CTYPE ia keywords for the celestial axes. Vari-
able2-scaling as shown in Figs. 6 & 7 may be implemented via
CDELT ia.

As data storage has become much less of an issue in recent
years we do not consider it necessary to create an analogue of the
CUBEFACE keyword to coverHPX. However, if HEALPix data in the
double-pixelisation is repackaged into the pseudo-quadcube layout
shown in Fig. 5 theCUBEFACE storage mechanism is applicable for
H = 4 (only) and will be treated properly byWCSLIB (Calabretta
1995).

Since the HEALPix projections are constructed with the origin
of the native coordinate system at the reference point, we set

(φ0, θ0)HEALPix = (0,0). (14)

None of the HEALPix projections are scaled true at the reference
point in the sense discussed in Sect. 5 of Calabretta & Greisen
(2002), nor are the rescaledH = 3 & 6 projections, but they are
all scaled true inx.

The general form of the projection equations together with
their inverses, re-expressed in the form required by FITS with all
angles in degrees rather than radians, are now summarised formally.

In the equatorial zone where| θ | ≤ θ× = sin−1((K − 1)/K):

x = φ, (15)

2 =
90◦K

H
sinθ, (16)

1 Ratified by the IAU FITS Working Group on 2006/04/26 as an official
extension of the FITS WCS standard.

in the polar zones, where| θ | > θ×:

x = φc + (φ − φc)σ, (17)

2 = ±
180◦

H

(
K + 1

2
− σ

)
, (18)

where the positive sign on2 is taken forθ > 0, negative otherwise,
and

σ =
√

K(1− | sinθ | ), (19)

φc = −180◦ +

(
2

⌊
(φ + 180◦)H

360◦
+

1− ω
2

⌋
+ ω

)
180◦

H
, (20)

ω =

{
1 . . . if K is odd orθ > 0,
0 . . . otherwise.

(21)

These equations are readily invertible. In the equatorial zone
where| 2 | ≤ 90◦(K − 1)/H:

φ = x, (22)

θ = sin−1
(
2H

90◦K

)
, (23)

in the polar zones, where| 2 | > 90◦(K − 1)/H:

φ = xc + (x− xc)/σ, (24)

θ = ± sin−1

(
1−
σ2

K

)
, (25)

where the positive sign onθ is taken for2 > 0, negative otherwise,
and

σ =
K + 1

2
−
| 2H |
180◦

, (26)

xc = −180◦ +

(
2

⌊
(x+ 180◦)H

360◦
+

1− ω
2

⌋
+ ω

)
180◦

H
, (27)

wherexc is the value ofx in the middle of a polar facet, as forφc,
andω is given by Eq. (21).

FITS keywordsPV i 1a andPV i 2a attached tolatitudecoor-
dinatei will be used to specifyH andK with default values 4 and
3 respectively.

HPX has been implemented in version 4.0 and later versions
of WCSLIB which is distributed under the GNU General Public Li-
cense (GPL).

As of version 4.3,WCSLIB includes a utility program that con-
verts 1-D HEALPix pixelisation data stored in a variety of forms in
FITS, including ring or nested organisation in a binary table exten-
sion, into a 2-D primary image array withHPX coordinate represen-
tation.

7 SUMMARY

HEALPix projections are constructed as a hybrid of the cylindrical
equal area projection in the equatorial regions and the Collignon
projection at the poles. The polar vertex of the Collignon projection
is cut off at latitude sin−1((K − 1)/K) over the range of longitudes
−180◦/H to+180◦/H, and the longitude scale is then stretched by a
factor ofH/2 to make the vertex angle 90◦. This right-angled isoce-
les triangular cap is then replicated and arranged in the prescribed
way at the top and bottom of a cylindrical equal area projection
truncated at the same latitude. This provides an equi-areal projec-
tion which is naturally divisible into diamond (i.e. square) facets.

While in practical cartography Collignon’s projection is re-
garded as little more than a mathematical curiosity, the HEALPix
projection makes good use of its property of mapping the sphere

c© 2007 RAS, MNRAS000, 1–8
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onto squares. That which is awkward for visual representation of
the sphere becomes apposite as the basis for constructing an effi-
cient hierarchical pixelisation.
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Tissot A., 1881, Ḿemoire sur la repŕesentation des surfaces et les
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