
Astronomy & Astrophysics manuscript no. notes February 11, 2004
(DOI: will be inserted by hand later)

Miscellaneous notes on the derivation of some formulæ and
special conditions in FITS WCS Paper II

M. R. Calabretta1

Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia

10 February 2004

Abstract. Background notes on the mathematical derivation of some troublesome formulæ and special conditions in FITS
WCS Paper II.

1. Spherical coordinate transformation

Derivation of special conditions for the spherical coordinate
transformation between native and celestial coordinates.

In the following, bear in mind that (φp, θp) and (αp, δp) refer
to different points; the common “p” subscript indicates that they
are coordinates of “the pole”, but not the same pole; (φp, θp) are
the native coordinates of the celestial pole, and (αp, δp) are the
celestial coordinates of the native pole. Generally the native
and celestial poles do not coincide.

On the other hand, (φ0, θ0) and (α0, δ0) do refer to the same,
fiducial, point (normally the reference point of the projection).

The spherical coordinate transformation equations from
Paper II are:

α = αp + arg (sin θ cos δp − cos θ sin δp cos(φ − φp),
− cos θ sin(φ − φp)),

δ = sin−1(sin θ sin δp + cos θ cos δp cos(φ − φp)),
(1)

and their inverses

φ = φp + arg (sin δ cos δp − cos δ sin δp cos(α − αp),
− cos δ sin(α − αp)),

θ = sin−1(sin δ sin δp + cos δ cos δp cos(α − αp)).
(2)

Relations between (φ0, θ0), (α0, δ0), (φp, θp), and (αp, δp) are de-
rived from these. φ0, θ0, α0, δ0, and φp, are considered to be
given while θp, αp, and δp are considered to be derivative.

1. θp = δp.
Proof: substituting δ = +90◦ into Eq. (2θ) gives sin θp =
sin δp, whence θp = δp.
Comment: the native latitude of the celestial pole is always
equal to the celestial latitude of the native pole. This is a
basic property of spherical coordinate rotations.

2. If δ0 = +90◦:
• δp = θ0.

Proof: substituting (α, δ) = (α0, 90◦) into Eq. (2θ) re-
duces it to sin θ0 = sin δp, whence δp = θ0.

• φp = φ0 . . . θ0 , ±90◦.
Proof: substituting (α, δ) = (α0, 90◦) and δp = θ0 into
Eq. (2φ) gives φ0 = φp + arg (cos θ0, 0). For θ0 , ±90◦

this reduces to φp = φ0.
• αp is indeterminate.

Proof: substituting (φ, θ) = (φ0, θ0), δp = θ0, and φp =

φ0 (θ0 , ±90◦) into Eq. (1α) and rearranging gives αp =

α0 − arg(0, 0).
Now, if θ0 = ±90◦, substituting (φ, θ) = (φ0,±90◦) and
δp = θ0 = ±90◦ into Eq. (1α) gives α0 = αp + arg (0, 0).

Comment: for δ0 = 90◦ the celestial pole is at the fiducial
point. Therefore, unless the fiducial point is at one of the
native poles, the native longitude of the celestial pole, φp,
must be equal to the native longitude of the fiducial point,
φ0; if it is given (via LONPOLEa) as some other value then
the FITS WCS header is invalid.

3. If δ0 = −90◦:
• δp = −θ0.

Proof: substituting (α, δ) = (α0,−90◦) into Eq. (2θ) re-
duces it to sin θ0 = − sin δp, whence δp = −θ0.
• φp = φ0 + 180◦ . . . θ0 , ±90◦.

Proof: substituting (α, δ) = (α0, 90◦) and δp = −θ0 into
Eq. (2φ) gives φ0 = φp+arg (− cos θ0, 0). For θ0 , ±90◦

this reduces to φ0 = φp + 180◦.
• αp is indeterminate.

Proof: substituting (φ, θ) = (φ0, θ0), δp = −θ0, and φp =

φ0 + 180◦ (θ0 , ±90◦) into Eq. (1α) and rearranging
gives αp = α0 − arg(0, 0).
Now if θ0 = ±90◦, substituting (φ, θ) = (φ0,±90◦) and
δp = −θ0 = ∓90◦ into Eq. (1α) gives α0 = αp+arg (0, 0).

Comment: for δ0 = −90◦ the celestial pole is antipodal to
the fiducial point. Therefore, unless the fiducial point is at
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Table 1. Summary of the determination of (αp, δp) for special-case values of θ0 and δ0. The three places where φp appears in the table indicate
restrictions on its value for the particular values of θ0 and δ0.

θ0 = +90◦ θ0 = −90◦ θ0 , ±90◦

δ0 = +90◦ δp = θ0 = +90◦ . . . 2 δp = θ0 = −90◦ . . . 2 δp = θ0 . . . 2
δp = δ0 = +90◦ . . . 4 δp = −δ0 = −90◦ . . . 5 φp = φ0 . . . 2
αp indeterminate . . . 2, 4, 6 αp indeterminate . . . 2, 5, 7 αp indeterminate . . . 2
αp ≡ α0 αp ≡ α0 αp ≡ α0

δ0 = −90◦ δp = −θ0 = −90◦ . . . 3 δp = −θ0 = +90◦ . . . 3 δp = −θ0 . . . 3
δp = δ0 = −90◦ . . . 4 δp = −δ0 = +90◦ . . . 5 φp = φ0 + 180◦ . . . 3
αp indeterminate . . . 3, 4, 7 αp indeterminate . . . 3, 5, 6 αp indeterminate . . . 3
αp ≡ α0 αp ≡ α0 αp ≡ α0

δ0 , ±90◦ δp = δ0 . . . 4 δp = −δ0 . . . 5 If δp = +90◦, then αp = α0 + (φp − φ0) − 180◦

αp = α0 . . . 4 αp = α0 + 180◦ . . . 5 If δp = −90◦, then αp = α0 − (φp − φ0)

θ0 = 0◦

δ0 = 0◦ φp = φ0 ± 90◦ . . . 8
δp indeterminate . . . 8
αp = α0 − (φp − φ0) . . . 8
= α0 ∓ 90◦ . . . 8

one of the native poles, the native longitude of the celestial
pole, φp, must be antipodal to the native longitude of the
fiducial point, φ0; if it is given (via LONPOLEa) as some
other value then the FITS WCS header is invalid.

4. If θ0 = +90◦:
• δp = δ0.

Proof: substituting (φ, θ) = (φ0, 90◦) into Eq. (1δ) re-
duces it to sin δ0 = sin δp, whence δp = δ0.

• αp = α0 . . . δ0 , ±90◦.

Proof: substituting (φ, θ) = (φ0, 90◦) and δp = δ0 into
Eq. (1α) gives α0 = αp + arg (cos δ0, 0). For δ0 , ±90◦

this reduces to αp = α0.

• αp is indeterminate if δ0 = ±90◦.

Proof: from above if δ0 = ±90◦, α0 = αp + arg(0, 0).

Comment: for θ0 = 90◦ the fiducial point is at the native
pole, so these results are essentially just the definition of
(αp, δp) as the celestial coordinates of the native pole.

5. If θ0 = −90◦:
• δp = −δ0.

Proof: substituting (φ, θ) = (φ0,−90◦) into Eq. (1δ) re-
duces it to sin δ0 = − sin δp, whence δp = −δ0.

• αp = α0 + 180◦ . . . δ0 , ±90◦.

Proof: substituting (φ, θ) = (φ0, 90◦) and δp = −δ0 into
Eq. (1α) gives α0 = αp+arg (− cos δ0, 0). For δ0 , ±90◦

this reduces to α0 = αp + 180◦.

• αp is indeterminate if δ0 = ±90◦.

Proof: from above if δ0 = ±90◦, α0 = αp + arg(0, 0).

6. If δp = +90◦:

• δ = θ.

Proof: substituting δp = 90◦ into Eq. (1δ) (or Eq. (2θ))
reduces it to sin δ = sin θ, whence δ = θ.

• δ0 = θ0.

Proof: a special case of the above.

• α = αp + φ − φp − 180◦ . . . δ = θ , ±90◦

Proof: substituting δp = 90◦ into Eq. (1α) reduces it to
α = αp + arg (− cos θ cos(φ − φp),− cos θ sin(φ − φp)).
For θ , ±90◦ this becomes α = αp + arg (cos(φ − φp −

180◦), sin(φ−φp−180◦)), whence α = αp+φ−φp−180◦.

• αp = α0 + (φp − φ0) − 180◦ . . . δ0 = θ0 , ±90◦

Proof: a special case of the above.

• α is indeterminate if δ = θ = ±90◦.

Proof: substituting δp = 90◦, θ = ±90◦ into Eq. (1α)
reduces it to α = αp + arg(0, 0).

• αp is indeterminate if δ0 = θ0 = ±90◦.

Proof: substituting δp = 90◦, θ0 = ±90◦ into Eq. (1α)
reduces it to α0 = αp + arg(0, 0).

Comment: for δp = 90◦ the native and celestial poles coin-
cide.

7. If δp = −90◦:
• δ = −θ.

Proof: substituting δp = −90◦ into Eq. (1δ) (or Eq. (2θ))
reduces it to sin δ = − sin θ, whence δ = −θ.

• δ0 = −θ0.

Proof: a special case of the above.
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• α = αp − (φ − φp) . . . δ = −θ , ±90◦

Proof: substituting δp = −90◦ into Eq. (1α) reduces it
to α = αp + arg (cos θ cos(φ − φp),− cos θ sin(φ − φp)).
For θ , ±90◦ this becomes α = αp + arg (cos(φp −

φ◦), sin(φp − φ)), whence α = αp − (φ − φp).

• αp = α0 − (φp − φ0) . . . δ0 = −θ0 , ±90◦

Proof: a special case of the above.

• α is indeterminate if δ = −θ = ±90◦.

Proof: substituting δp = −90◦, θ = ±90◦ into Eq. (1α)
reduces it to α = αp + arg(0, 0).

• αp is indeterminate if δ0 = −θ0 = ±90◦.

Proof: substituting δp = −90◦, θ0 = ±90◦ into Eq. (1α)
reduces it to α0 = αp + arg(0, 0).

Comment: for δp = −90◦ the native pole coincides with the
celestial south pole.

These results are summarized in Table 1 which also demon-
strates completeness and self-consistency for values of θ0, δ0,
and δp of ±90◦. Indeterminate values of αp occur for δ0 = ±90◦;
for these we define αp ≡ α0, as shown in the table. This defi-
nition is appropriate for θ0 = +90◦. Other special values of θ0
and δ0 are

8. If θ0 = δ0 = 0:
• αp − α0 = −(φp − φ0) = ±90◦ . . . δp , ±90◦.

Proof: substituting θ0 = δ0 = 0 into Eq. (2θ) gives
cos δp cos(α0 − αp) = 0. For δp , ±90◦ this reduces
to cos(α0 − αp) = 0 whence α0 − αp = ±90◦.

Now, substituting θ0 = δ0 = 0 and αp − α0 = +90◦ into
Eq. (2φ) gives φ0 = φp + arg(0,−1) whence φ0 − φp =

−90◦.

Likewise, substituting θ0 = δ0 = 0 and αp − α0 = −90◦

into Eq. (2φ) gives φ0 = φp + arg(0,+1) whence φ0 −

φp = +90◦.

• δp is indeterminate.

Proof: substituting θ0 = δ0 = 0 and φp − φ0 = ±90◦

(δp , ±90◦) into Eq. (1δ) gives cos δp = 0/0.

Comment: φp = φ0 ± 90◦ is required when θ0 = δ0 = 0; if it
is given (via LONPOLEa) as some other value then the FITS
WCS header is invalid. Also, δp is completely determined
by LATPOLEa when θ0 = δ0 = 0.

These results are also included in the bottom part of Table 1.
All of the results in Table 1 follow from Eqs. (8), (9), and

(10) of WCS Paper II subject to the conditions (1-6) listed after
the equations where it is understood that these are to be consid-
ered in sequence.

2. AZP conic sections

Derivation of the equations of the conic sections for the pro-
jected parallels of native latitude for the AZP projection.

Projection equations for zenithal perspective projection are:

x = R sin φ , (3)
y = −R sec γ cos φ , (4)

where

R =
180◦

π

(µ + 1) cos θ
(µ + sin θ) + cos θ cos φ tan γ

. (5)

For constant θ, each parallel of native latitude defines a cone
with apex at the point of projection. This cone intersects the
tilted plane of projection in a conic section. Write

Y = −y cos γ , (6)

R =
1

κ + λ cos φ
, (7)

where

κ =
π(µ + sin θ)

180(µ + 1) cos θ
, (8)

λ =
π tan γ

180(µ + 1)
, (9)

so that Eqs. (3) and (4) become

x =
sin φ

κ + λ cos φ
, (10)

Y =
cos φ

κ + λ cos φ
. (11)

Combining Eqs. (10) and (11) we have

x2 + Y2 =
1

(κ + λ cos φ)2 , (12)

but Eq. (11) gives

cos φ =
κY

1 − λY
, (13)

whence

(x2 + Y2)(
κ

1 − λY
)2 = 1 , (14)

κ2x2 + (κ2 − λ2)Y2 + 2λY = 1 . (15)

Second order equations of this general form are those of a conic
section. The quantity

C = κ2 − λ2 , (16)

=
π2
[
(µ + sin θ)2 − tan2 γ cos2 θ

]
1802(µ + 1)2 cos2 θ

, (17)

determines the nature of the curve:

C > 0 : ...ellipse,
C = 0 : ...parabola,
C < 0 : ...hyperbola.

(18)

The condition C = 0 is satisfied when

θ = γ − sin−1(µ cos γ) . (19)

Completing the square in Eq. (15) gives, for C , 0,

κ2x2 +C(Y +
λ

C
)2 =

κ2

C
(20)
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whence for C > 0

x2

a2 +
(y − y0)2

b2 = 1 , (21)

where

a =
1
√

C
, (22)

b =
κ

C cos γ
, (23)

y0 =
λ

C
. (24)

Since a, b and y0 are functions of θ the eccentricity of the pro-
jected parallels varies as does the offset of their centres in y.


