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Abstract

The ‘butterfly’ projection is constructed as the polar layout of the HEALPix projection with (H, K) = (4, 3). This short
article formalises its representation in FITS.
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1 INTRODUCTION

The butterfly projection was described briefly in Section 3
of Calabretta & Roukema (2007) as the polar variant of the
HEALPix (HPX) projection with (H, K) = (4, 3). It is con-
structed by splitting the latter into four gores along the 0◦

and ±90◦ meridians, rotating them by 45◦ plus appropriate
multiples of 90◦, and joining them at the pole to produce
an × or a ‘butterfly’-shaped layout as depicted in Figure 1.
This achieves a 75% filling factor of the enclosing square
which compares favourably to 48% for the rotated HPX
projection.

The enhanced filling factor, together with the fact that
the required 45◦ rotation of the gores is a natural part of
the projection, suggests that the butterfly projection is more
suitable for storing HEALPix single-pixelisation data than
the rotated HPX projection, which itself is better suited to the
double-pixelisation (Calabretta & Roukema 2007).

The purpose of this article is to formalise the representation
of the butterfly projection in FITS (Pence et al. 2010).

2 XPH IN FITS

The butterfly projection will be denoted in FITS with algo-
rithm code XPH in the CTYPEia keywords for the celestial
axes. As it is constructed with the pole of the native coordi-
nate system at the reference point, we set

(φ0, θ0)XPH = (0, 90◦). (1)

The XPH projection is constructed by rearranging the gores
of the HPX projection, whereby the scale at the reference

point is inherited from the scale at the poles of the HPX
projection. In fact, the scale varies with direction (is non-
conformal), with circles projected as squares. Thus, the XPH
projection is not scaled true at the reference point in the sense
discussed in Section 5 of WCS Paper II (Calabretta & Greisen
2002). The map scale is expanded by π

√
3/4 (�1.36) in the

x and y directions, reducing to π
√

3/2/4 (�0.96) along the
diagonals.

2.1 Projection equations

The projection equations for XPH, together with their in-
verses, expressed in degrees as required by FITS, are as
follows.

Assuming that the native longitude, φ, is normalised in the
range [−180◦, 180◦), then

(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

κ (−ξ ′ + η′, −ξ ′ − η′) . . . −180◦ ≤ φ < −90◦,
κ ( ξ ′ + η′, −ξ ′ + η′) . . . −90◦ ≤ φ < 0◦,
κ ( ξ ′ − η′, +ξ ′ + η′) . . . 0◦ ≤ φ < 90◦,
κ (−ξ ′ − η′, +ξ ′ − η′) . . . 90◦ ≤ φ < 180◦,

(2)

(ξ ′, η′) = (ξ − 45◦, η − 90◦), (3)

where κ = √
2/2. The native latitude that divides the equa-

torial and polar zones is θ× = sin −1(2/3). In the equatorial
zone, | θ | � θ×, we have

ξ = ψ, (4)

η = 135◦

2
sin θ, (5)
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Figure 1. The butterfly projection at the same scale as the graticules de-
picted in WCS Paper II.

and in the polar zones, where | θ | > θ×,

ξ = 45◦ + (ψ − 45◦) σ, (6)

η = sgnθ (90◦ − 45◦σ ), (7)

where sgn θ gives the algebraic sign of θ , and

ψ = (φ + 180◦) (mod 90◦), (8)

σ =
√

3(1 − | sin θ | ). (9)

2.2 Deprojection equations

To invert the projection equations, first compute (ξ , η) via

(ξ , η) = (ξ ′ + 45◦, η′ + 90◦), (10)

(ξ ′, η′) =

⎧⎪⎪⎨
⎪⎪⎩

κ (−x − y, x − y) . . . x ≤ 0, y > 0,

κ ( x − y, x + y) . . . x < 0, y ≤ 0,

κ ( x + y, −x + y) . . . x ≥ 0, y < 0,

κ (−x + y, −x − y) . . . x > 0, y ≥ 0,

(11)

where κ = √
2/2 as before. Then

φ =

⎧⎪⎪⎨
⎪⎪⎩

ψ − 180◦ . . . x ≤ 0, y > 0,

ψ − 90◦ . . . x < 0, y ≤ 0,

ψ . . . x ≥ 0, y < 0,

ψ + 90◦ . . . x > 0, y ≥ 0.

(12)

In the equatorial zone where | η | ≤ 45◦,

ψ = ξ, (13)

θ = sin−1

(
2η

135◦

)
, (14)

and in the polar zones, where | η | > 45◦,

ψ = 45◦ + (ξ − 45◦)/σ, (15)

θ = sgn η sin−1

(
1 − σ 2

3

)
, (16)

where

σ = 90◦ − | η |
45◦ . (17)

3 IMPLEMENTATION NOTES

This section records some problems that may arise in imple-
menting these equations at the highest levels of numerical
precision.

3.1 Equation (8)

A subtle problem arises from the innocent looking Equation
(8) when φ < 0 but very close to zero; in this case, ψ should
be just slightly less than 90◦. However, due to the loss of
numerical precision that results from adding 180◦ to φ, or
simply from taking the modulo 90◦ (e.g. via the fmod func-
tion in C), application of Equation (8) may instead yield ψ =
0, effectively as though φ = 0. After computing (ξ ′, η′), the
problem then arises by selecting the φ < 0 option in Equation
(2) when in fact the φ = 0 option would be the appropriate
one in this case.

A simple solution is, when computing ψ , also to recompute
φ as (φ + 180◦) − 180◦ as this will apply the same numerical
rounding to φ as occurred in computing ψ , thereby ensuring
selection of the appropriate option in Equation (2).

3.2 Equations (9) and (16)

Numerical precision may be lost in Equations (9) and (16)
when σ is very close to zero, which unfortunately occurs
in the neighbourhood of the reference point. This precision
may be recovered by rewriting Equation (16) using the small
angle trigonometric formulae, which allows the expression
in σ 2 to be replaced by one in σ . Thus,

θ = 90◦ − 180◦

π

√
2

3
σ, (18)

which is applicable for σ<10−4 for calculations in double-
precision IEEE floating point. Equation (9) may then be re-
placed by the inverse of this:

σ = (90◦ − θ )
π

180◦

√
3

2
, (19)

which is applicable for θ greater than the value obtained from
Equation (18) with σ = 10−4.

4 CONCLUSION

XPH has been implemented in version 4.18 and later versions
of WCSLIB (Calabretta 1995), which is distributed under the
Lesser GNU General Public License (LGPL).

As of version 4.3, WCSLIB has included a utility program
that converts 1D HEALPix pixelisation data stored in a va-
riety of forms in FITS, including ring or nested organisation
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in a binary table extension, into a 2D primary image array
optionally with HPX or XPH coordinate representation.
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