

ASKAIC update - November 2008

Dr Carole Jackson CSIRO Australia Telescope National Facility

Capability - what does ASKAP need?

*** A new Radio Telescope & New Observatory ***

- •Site management & infrastructure roads, power, optical fibre
- Project management Build, maintenance, operations & scheduling
- Low-cost antennas
- Focal plane phased array (FPA) receivers (0.3 3 GHz)
- Low noise uncooled receiver components ('receiver-on-chip')
- High speed, low cost DSP
- Intelligent, self-monitoring control systems
- RFI mitigation techniques

ASKAP Status: November 2008

- Phased Array Feed testing on-going at Parkes
 Testbed Facility
- ASKAP Antenna contract signed
- Science Survey Teams Expressions of Interest

201

2010

2009

2008

3ETA oabilit

est

arkes

- In midst of Preliminary Design Reviews
- System architecture complete
- Native title negotiations on-schedule (mid '09)
- Fibre contract(s) starting this year (late '09)
- Environmental & heritage study done

YOU ARE NOW LEAVING THE MURCHISON RADIO-ASTRONOMY OBSERVATORY

THANK YOU FOR BEING RADIO QUIET

Australian SKA Industry Opportunities

ASKAP as an SKA Pathfinder (PrepSKA)

• Has to demonstrate SKA subsystems & key technologies to TRL≥7

Engage in early-phase R&D (co-investment or service)

- Demonstrate capability to international SKA community
- Develop skills in-house
- Foster strategic international relationships
 - Multi-national company engagement
 - Foster relationships in wider radio astronomy community esp Canada, USA, South Africa & EU.

Engage with Aus SKA Industry cluster activities –

On line Capability Directory Networking, positioning IP & skills towards SKA

Industry Engagement IPT - What's what now!

MRO Project

Status:

- defined basic requirements for the two sites, including power, building space, roads, antenna power, etc
- worked with SKM on the submission to obtain PWC approval.

Next steps:

- Non-invasive geotechnical study (December 2008)
- Refining requirements specs for facilities (Nov Dec 2008)
- Develop brief to design groups (Dec 2008)
- Engage (EOI, RFT, direct contracts) design and construction groups

Stakeholders:

- ASKAP IPTs
- SKA
- Other site users MWA, PAPER etc

MRO project: Power

Power requirements:

ASKAP:	613 kW
MWA:	120 kW
Total:	733 kW

- = 2 million litres of diesel a tanker a week !
- = \$4m per year

Generation:

- as much "green" as possible.
- demand side management: 1 kW per year is \$4,000 of diesel
 - capital cost versus operating costs
- working with a range of companies to investigate options:
 - PV solar, thermal solar
 - (wind, geothermal)
 - issues: energy storage

ASKAP Computing strategy

Choose areas of innovation

- Synthesis processing
- Parallel processing

• Partner!

- ASTRON & other SKA-institutions
- Industry
- Be conservative in most areas
 - e.g. use mature, stable EPICS as basis for monitor and control
- Close collaboration with Science Teams
 - Vital to get strategies, algorithms correct
- Develop iteratively
 - Sequence of increasingly complete solutions
- Package science capabilities
 - Science/Software Instruments
- Release incrementally

CPTEST2: first parallel processed mosaic image

ASKAP System Architecture

ASKAP data flow, processing, and storage

CSIRO

ASKAP & Imaging Innovation

Telescope = imaging from measurements of E-field

- Standard approach to ASKAP
 - Antenna+PAF->Beamformers->Correlator->Inverse FFT Box->Image

Another approach

- Antenna+PAF->Massive solver of linear equations->Image
- Or
 - Antenna+PAF->2 Petaflop Black Box->Image
- better still
 - Antenna+PAF->2 Petaflop Black Box->Science result
- and so finally....
 - SKA->few Exaflop Black Box->Science result

Single Digital Backend

CSIRO

Single Digital Backend

- Unique concept
 - Beamforming, correlation, imaging, science analysis in one computer
- Breakdown of processing for ASKAP
 - Summing to form multiple beams on the sky: 1.0 PFlop/s
 - Correlation to form cross-correlation of beams: 0.3 PFlop/s
 - Imaging and science analysis: 0.1 PFlop/s
 - Low computational complexity
- Beamforming, correlation currently performed in specialized FPGAware
 - 50 racks for ASKAP, ~ 5,000 for SKA?
 - For SKA, integration, scale, complexity will be killers
- Advantages of computer-based processing
 - We buy the hardware readily integrated and assembled by someone else,
 - Linux operating system, complete with compilers, debuggers, profilers, etc.
 - We can contract outside for hardware and software support.
 - There is an easy (although not free) upgrade path.
 - We program it using a high level language and tools.

Computing: Industry engagement

- Strong interest from industry in SKA (and ASKAP) computing
- In computing issued request for help on key processing element
 - Convolutional resampling
- Many replies
 - IBM Collaborative agreement : Cell, Blue Gene, System S
 - CRAY Collaborative/research agreement embed FPGA
 - Intel provided equipment, analytical help
 - Other interactions SGI, Sun, etc
- Net result
 - Rapid advances in our understanding
- Many ongoing interactions
 - Number of meetings with vendors at Supercomputer 08 in Austin
- Will issue Call for Expressions of Interest for SDB

ASKAP developments (Antennas -FPA support)

Cable wraps and cable assemblies;

- Lightweight compact
- High cable packing density
- Mechanical life testing

ASKAP Antennas

ATNF team involved in design consultation & ensuring technical specification is delivered (RTM)

• On track for CDR Dec 08, PPR Mar 09: 1st antenna Nov 09

ASKAP IPT supporting work

- Detailed model/analysis of the cable management systems
- Detailed design/modelling of the cable wraps esp polarisation axis
- Detailed definition of the antenna control system

Other:

- Implementation of pedestal systems & services (including air cooling)
- Implementation of FPA cooling system

