

C O N v e r g e n t
R a d i o

A s t r o n o m y
D e m o n s t r a t o r

CONRAD

CONRAD Architecture

CONRAD-SW-0011

Issue 1.0

2007/06/02

Keywords: architecture requirements CN1_Architecture CONRAD computing software

Prepared By:
Name Signature Date
Tim Cornwell
Juan Carlos Guzman
Jasper Horrell
Yuantu Huang
Malte Marquarding
Simon Ratcliffe
Ger van Diepen
Maxim Voronkov

Approved By:
Name Signature Date

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 2 of 38

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 3 of 38

Document History
DATE AUTHOR SECTIONS/PAGES AFFECTED REVISION

REMARKS
2007/05/19 As listed 0.2
Initial version for internal review
2007/05/28 Tim Cornwell All 0.3
All sections edited as per reviewers comments.
2007/05/28 Juan C Guzman Section 9 0.4
Figure 11 and Section 9.2 updated. Front cover updated to latest template layout.
2007/05/29 Tim Cornwell Sections 1, 6 0.5
New figure, some wording changes per reviewers comments
2007/06/02 Jasper Horrell All 1.0
Revamped Analysis of Requirements section. Elsewhere minor text and figure
typo scale fixes for issue-1, updated list of acronyms.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 4 of 38

Table of Contents
1 Introduction.. 5

1.1 Summary .. 5
1.2 Scope .. 5
1.3 References ... 5
1.4 Glossary.. 5

2 Analysis of requirements .. 7
3 Project philosophy... 8
4 Telescope Management ... 10

4.1 CTOS Overview ... 10
4.2 CTOS Executive and Components... 12
4.3 CTOS Monitoring and Control... 13
4.4 Fault Handling and Logging .. 15

5 Data flow in a CONRAD telescope .. 17
6 The CONRAD Central Processor .. 20

6.1 Processing tasks .. 20
6.1.1 Data Sets ... 21

6.2 Visibility data distribution and processing .. 21
6.2.1 Calibration and imaging .. 21
6.2.2 Distribution of the data.. 22
6.2.3 Master/worker control ... 23
6.2.4 Interprocess communication .. 24

6.3 Visibility Data Access... 24
6.4 Robustness... 25
6.5 Interface to Monitoring and Control .. 25

7 The CONRAD Data Store .. 26
7.1 Internal use of the CDS ... 26
7.2 CONRAD Archive... 26

8 User Interfaces .. 28
8.1 Web Interface ... 28
8.2 Python Interface ... 29

9 Deployment ... 32
9.1 Antenna Control ... 33
9.2 Time Server .. 33
9.3 Site Monitoring Station... 33
9.4 Beamformers .. 33
9.5 Correlator .. 33
9.6 CONRAD Data Conditioner (CDC) and Router ... 33
9.7 Central Processor (CP) ... 33
9.8 CONRAD Data Store (CDS) ... 34
9.9 CONRAD Telescope Operating System (CTOS) .. 34

10 CONRAD software development processes... 36
10.1 Structure ... 36

10.1.1 Code... 36
10.1.2 3rdParty ... 37
10.1.3 Tools .. 37

10.2 Dependency Rules... 37
10.3 Software Development Life Cycle... 37

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 5 of 38

1 Introduction

1.1 Summary
The Convergent Radio Astronomy Demonstrator (CONRAD) is a computing collaboration between the
meerKAT and MIRANdA telescope computing teams which aims to produce the common software
required to operate and process/reduce the data from the two telescopes. The collaboration also
includes some participation from LOFAR, limited in scope to the data pipeline area. The top level
architecture of CONRAD is described.

1.2 Scope
The top level software architecture of CONRAD is described. This architecture has been developed to
meet the CONRAD functional requirements [1]. The detailed design and implementation of CONRAD
subsystems are not described in this document.

The CONRAD functional requirements document [1] and this architecture document lay out the
MIRANdA and meerKAT computing teams’ joint view of computing architectural requirements and
implications at the time of writing and indicate the direction of the current technical development. We
expect several iterations of these documents will be required in consultation with the wider projects
before signature. Due to the pervasive nature of the telescope computing systems, we expect these
documents to assist in firming up the project-level thinking around telescope specifications and design.

1.3 References
1. CONRAD Functional Requirements, CONRAD-SW-0010, version 1.0, 2007, J. Horrell, M.

Voronkov, et al.
2. Measurement Equation design and implementation, CONRAD-SW-0003, version 0.1, 2007, T.J.

Cornwell
3. Duchamp source finder. http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/
4. Master/worker design, CONRAD-SW-0012, version 0.1, 2007, G. van Diepen
5. CONRAD Software Standards, CONRAD-SW-0007, version 0.1, 2007, R. Crida and M.

Marquarding
6. CONRAD Telescope Operating System, CONRAD-SW-0009, version 0.1, 2007, S. Ratcliffe
7. AIPS++ Measurement Set, AIPS++ memo 229, http://aips2.nrao.edu

1.4 Glossary

ACRONYM Definition

AgentX Standard for extending SNMP agent capabilities

ACSM Antenna Control Software Module

CDC CONRAD Data Conditioner

CDS CONRAD Data Store

CLI Command Line Interface

CONRAD Convergent Radio Astronomy Demonstrator

CP Central Processor

CTOS CONRAD Telescope Operating System

LDAP Lightweight Directory Access Protocol

FPGA Field Programmable Gate Array

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 6 of 38

GPIB General Purpose Interface Bus

GPS Global Positioning System

GPU Graphics Processor Unit

I/O Input / Output

M&C Monitoring and Control

MIB Monitor Information Base – a database of objects that can
be monitored by SNMP

NTP Network Time Protocol

OID Object Identifier

PAF Phased Array Feed

PED Phased Experimental Demonstrator

RDBMS Relational Data Base Management System (e.g. MySQL)

RFI Radio Frequency Interference

RRDTool Round Robin Database Tool

SNMP Simple Network Management Protocol

SDLC Software Development Life Cycle

TPM Telescope Policy Manager

UI User Interface

VLAN Virtual Local Area Network

XDM Experimental Demonstrator Model

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 7 of 38

2 Analysis of requirements
The functional requirements for MIRANdA and meerKAT [1] are still evolving. In particular, the overall
scope of meerKAT is not yet fully defined and so any definitive statement as to the requirements is
premature. However, we can analyze the current requirements, and adjust in future as new
requirements are added. This practice gives us the ability to provide some costing feedback on new
requirements before they become firm commitments.

Although meerKAT and MIRANdA will differ in certain key aspects, the following aspects are common
and form the technical basis for the collaboration:

• Large number of antennas (30 – 100+) forming a radio synthesis array with max baseline <
10km,

• Large data volumes (up to Terabytes per hour) which will require distributed processing,

• Operation at centimetre wavelengths,

• Capable of continuum imaging to the confusion limit,

• Capable of integrating spectral line images for ~ 1 year (full sky) or ~ 3 months (single
pointing), with large numbers of channels,

• Capable of polarimetric observations,

• Presenting a summed array beam for VLBI or pulsar observing,

• Situated in an isolated location, operated remotely, without a dedicated maintenance staff on-
site,

• Fully automated pipelined processing for many use cases (incl. RFI mitigation),

• Small dishes as the concentrators (< 15m diameter),

In the MIRANdA case, a wide field of view is required (up to tens of square degrees). The field of view
requirement for meerKAT may not be as large and the emphasis is likely to be on better sensitivity
coupled with reasonable field of view.

In the use cases where fully automated pipelined processing is necessary, the primary interaction
between astronomers and the CONRAD telescope will be via the CONRAD Archive.

The principal origin of many challenges lies in the combination of wide field of view, large number of
antennas, and many spectral channels. The wide field of view, however obtained, brings complications
–the wide-field component (phased array feed or horn array) will require special calibration, and the
imaging algorithms may require innovations.

The large data rate demands real-time processing which implies many other features. For example,
rather than write the visibility data to a self-contained export format, such as the AIPS++
MeasurementSet, the pipeline processing algorithms can query the state of the telescope directly from
the relevant database. Thus the telescope should be seen as one complete and integrated system,
including the pipeline.

The telescopes will both be deployed at remote sites for reasons of RFI mitigation. This deployment will
command a high cost premium and an active RFI mitigation system which forms part of the pipeline
processing is required to maximize this investment.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 8 of 38

3 Project philosophy

We plan highly focused software

Our delivery timescales are short by any standards and budgets are limited. As a consequence, we
need to move quickly and lightly and have encouraged our stakeholders to focus on key requirements.
We aim for quality software that is simple in structure without being too limiting. We expect to spend
only about 50 – 60 FTE-years on CONRAD software in order to support the basic modes. This is 5 – 10
% of the cost of the two telescopes – MIRANdA and meerKAT.

SKA relevance

Both meerKAT and MIRANdA are SKA pathfinder instruments and, while CONRAD architecture has
been chosen with SKA scalability in mind, this is not a driving requirement. Rather, CONRAD builds
experience in software and techniques that are relevant to SKA and will meet the requirements of the
pathfinders, but is not intended to necessarily grow into the actual SKA software.

Collaboration and joint management

The collaboration and joint management approach seeks to demonstrate a viable model for SKA
software development with distributed teams.

Novel requirements and novel approach

Our timescales, budget and certain novel telescope requirements drive novel architecture thinking. In
particular, the telescopes need to support a model of simultaneous observations and processing,
remote operations with difficult logistics, dealing effectively with large volumes of data, a large number
of antennas and wide field-of-view imaging.

We try to use existing third party software as much as practical

We do not attempt to create everything from scratch, but rather make intelligent re-use and extension of
widely deployed third party software, where suitable. In particular, we have taken note of software
systems widely deployed in commercial environments with large numbers of networked components.

We allow partners to use commercial software as required but avoid lock-in.

Although commercial software may be suitable to use in parts of the system, the guiding principle for
CONRAD in this respect is that the CONRAD software should not be tied to any specific vendor. This is
to avoid long-term licensing issues and enable wider adoption of the code. For this reason, most of the
third party software currently envisaged to be used is open source / open licence. For example, if an
Oracle database is used for reasons of performance or scalability, it should still be possible to move the
CONRAD software to a different database (e.g. PostgreSQL) without major effort.

Deploy early and often

We deploy working versions early and often, to catch integration problems as soon as possible. Our
projects, MIRANdA and meerKAT provide numerous opportunities for this type of testing.

Don’t over-design, refactor

Refactoring is preferred to initial (over)-design, since it reflects the reality of evolving understanding of
the problem domain, as well as the possibility of changing requirements.

Design to interfaces

Designing to interfaces promotes decoupling of components and thus increase maintainability and
facilitates refactoring.

We try to avoid hardware interface lock-in

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 9 of 38

Where possible the CONRAD computing systems should avoid lock-in to proprietary hardware
interfaces (e.g. GPIB). This is for the same reasons as discussed for commercial software lock-in. Note
that for reasons of gearing and long term support, the CONRAD computing systems seek to take
advantage of widely adopted open standards for hardware and software.

Proposed changes in requirements will require analysis and costing.

Proposed changes in the computing requirements will not automatically be accepted and may require
extensive analysis and costing prior to some decision around acceptance.

Substantially changing requirements will require revision of plans.

Requirements that change substantially may affect the balance of the collaboration and may also
require a change in timescales or budget.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 10 of 38

4 Telescope Management
Telescope management, monitoring and high level control is the responsibility of CTOS (CONRAD
Telescope Operating System). This set of packages has been designed with several high level
principles in mind. These are as follows:

• A top-level scheduler is responsible for overall telescope control.

• Control is performed at a high level with the subsystems of the facility taking responsibility for
fine-grained control themselves.

• Monitoring is centralised, with each subsystem providing deep access to their internal
monitoring points.

• Observing and processing of data will occur simultaneously.

• Fault management and escalation is centralized. However, failsafe modes and critical faults are
handled by the subsystems themselves.

• Fastest loop handled by top-level control is of order 1s.

• A watchdog ensures availability of critical CTOS resources.

• Scientists will interact with facility data through an archive.

• It is essential that the system is always in a well determined state, implying that control must
reside in as few places as possible.

4.1 CTOS Overview
The operation of CTOS is managed through one of two user interfaces, either web- or python based.
Through these, the user can interact with the scheduler to create scheduled system tasks such as an
observing run or scheduled maintenance. In addition, the user may, through these interfaces, also
perform single-ended, non-scheduled tasks such as may be required for testing or debugging purposes.

The interaction with the scheduler produces schedule files that are passed to the schedule runner,
which is ultimately responsible for ensuring proper execution of the specified tasks (monitor, control
etc…). The two other points of control in the system are chiefly concerned with correct operation:

• The escalation manager is responsible for handling errors that occur during telescope
operation. It will make decisions based on the severity of the fault, and other information, and
enact these through interaction with the scheduler (in a severe case) or possibly just the
relevant subsystem directly.

• A watchdog is in place to ensure critical system services are available at all times.

Apart from the control related tasks, a range of other components are present that are involved in
ancillary functions such as monitoring, configuration management, user interface delivery and other
system tasks.

The basic building blocks of CTOS and their relationship to each other is shown in the diagram below:

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 11 of 38

Figure 1 Basic building blocks of CTOS

To help clarify the diagram above the connections between each storage form and the relevant
components is detailed in the table below:

Table 1 Connections between storage and components

 Storage Mechanism Provides data to Receives data from

LDAP Disk – bdb backend Monitoring system

Escalation Manager

Scheduler

UI Libraries

UI Libraries

RDBMS Disk – bdb backend Escalation Manager

Scheduler

UI Libraries

Escalation Manager

Scheduler

UI Libraries

Round Robin Database Disk - RRD UI Libraries Monitoring System

Virtual Filesystem Memory based Monitoring System Scheduler

Escalation Manager

UI Files (HTML/Images) Disk – text/binary files Tech / User Interfaces N/A

Schedule Files Disk – text/xml files Schedule Runner Scheduler

Log Files Disk – text files UI Libraries

Escalation Manager
(direct from log receiver)

Log Receiver (via
logrotate)

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 12 of 38

A brief description of the components is as follows:

• Scheduler – responsible for coordinating user requests and producing appropriate schedule
files for use by the schedule runner.

• Schedule runner – responsible for overall control of user tasks. All scientific control is
performed by this task.

• Escalation manager – any errors or out of bound events are handled here. Ensures telescope
remains operational in the event of faults.

• CTOS Watchdog – responsible for ensuring availability of core system components. More detail
in the next section.

• LDAP – directory that stores the static physical configuration of the facility.

• RDBMS – database used by portions of the web interface for user data capture and on the fly
configuration.

• RRD – a round robin database engine that is responsible for storing and ageing the monitoring
data captured by the monitoring system.

• Telescope Policy Manager – collects data from various aspects of the system via the
appropriate storage mechanism and provides conditioned meta-data to the CONRAD Data
Store (CDS).

• Monitoring system – responsible for gathering deep, system wide monitoring information and
storing in appropriate repository. Handles conversion and watch expressions.

• Virtual filesystem – this is a unix mountable virtual filesystem that exposes the relatively static
LDAP hierarchy and associated dynamic values in a traditional filesystem manner.

• Log receiver – central logger receives logging information from all running user tasks and
stores this in appropriate log files. Forwards errors on to the escalation manager.

• Trap handler – receives SNMP trap messages, formats these, and then forwards them to the
escalation manager. Each trap is also logged with the logging system.

• linuxPCAgentX – Provides a wide range of monitoring points on standard linux PC’s. Also
contains control functionality for launching processes. Used by the watchdog and the
monitoring system.

• SNMPD – System daemon that handles forwarding of SNMP set- and get requests to
appropriate AgentX plugin.

• Apache web library – webserver used to provide access to the system web interfaces along
with appropriate libraries for providing core backend services to the technical and user
interfaces.

• CTOS python library – used for python based control of the telescope. Exposes the monitoring
and control hierarchy directly to python and allows easy use of system level commands such as
LDAP manipulation.

• Logrotate – responsible for ageing and compressing system log files.

4.2 CTOS Executive and Components
The following diagram shows the main CTOS system processes and their division between system and
user space:

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 13 of 38

Figure 2 CTOS processes

The system processes listed are started at boot time through the use of standard init scripts. This
includes CTOS watchdog. Once the watchdog is satisfied that all of the dependant system processes
are available it will launch CTOS processes itself.

From this point on the watchdog takes responsibility for ensuring that all of the system and CTOS
processes stay running. Should a process terminate unexpectedly, the watchdog will re-spawn that
process and log accordingly.

It is important to note that most of the processes shown do not have to reside on the same physical
machine. The exceptions are that the Log Receiver and logrotate should be collocated, and that
SNMPD and linuxPCAgentX must be available in all machines that form part of CTOS core. The single
watchdog task will manage all of these distributed services.

4.3 CTOS Monitoring and Control
The diagram below shows a typical scenario involving monitor and control operations:

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 14 of 38

Figure 3 Example of control and monitor flow

This shows that monitoring of a subsystem extends right down to the deepest levels, and although the
interface to the data is somewhat abstracted, the information presented is still raw and not aggregated
or modified by the subsystem itself.

The chain in white shows how monitoring information (in this case the ambient temperature reading for
a particular antenna and the current position) is passed up from the relevant layers and made available
to CTOS.

Errors that are not handled locally (more information on this case in the next section) may have to go
through some conversions in order to produce a suitably formatted trap event that is sent directly to the
trap handler.

The control chain in black shows the concept of high-level control. CTOS issues a command such as
stow antenna. This may come from a variety of sources within CTOS: the scheduler (say for scheduled
maintenance); the user may generate this command from the user interface; or the escalation manager
might stow the dish based on a fault received. Once the antenna control subsystem has received this

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 15 of 38

command it enacts lower level control to realise this command. Thus a single command may become a
sequence of commands that control the drives of individual axes and ensure the brakes are applied
once the stow position has been reached. This is all hidden from the control system and no tight
external timing loops are required.

4.4 Fault Handling and Logging
The diagram below shows how the fault handling system and the centralised logger work:

Figure 4 Example of fault handling and logging

This diagram shows the case of a subsystem that contains a number of FPGAs, each with its own
embedded processing core. In the event of say a fan failure on FPGA 3 we do not want to rely on
CTOS to have to handle the problem.

Instead the subsystem itself is responsible for these critical failures that can lead to hardware failure. In
this example the subsystem executive will reduce the clock speed on the device in question in order to
run cooler.

Even though the event is handled locally, a trap is still sent to the escalation manager, so that it can
verify that the action taken by the subsystem is appropriate, and it can make decisions as to how this
change will effect the operation of the system as a whole.

All other faults and problems (i.e. non critical) are forwarded to the escalation manager for handling as
part of overall system control.

Problems that occur that are at a lower level (a warning) can be sent exclusively through the logging
system. The example in the diagram shows a log warning of excessive use of the CPU on FPGA 1. The
escalation manager will use this log information in conjunction with other monitoring information it may
request from the subsystem to make a decision. This decision may involve a control command to the
subsystem itself or may warrant more drastic action such as rescheduling the current run.

All traps sent by the system are also sent through the central logger in order to ensure dual data paths
for critical information.

Each subsystem must provide a self-test function to CTOS via an SNMP interface. Upon reception of
the self-test function, each subsystem should perform a self-test of its functionality as well as execute
the self-test function on each hardware device that belongs to that subsystem. Therefore, it is required
that each hardware device attached to a subsystem also provides a self-test function interface.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 16 of 38

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 17 of 38

5 Data flow in a CONRAD telescope
The CONRAD telescopes will have a number of operational modes. One of the most demanding for
data flow will be spectral line surveying of the entire sky. This is a high priority for MIRANdA.
The data flow in this mode for the 2km scale version of MIRANdA is shown in Figure 5. The data flow
for meerKAT is of similar scale. The data flow scales as the baseline length and the number of spectral
channels. For the 8km MIRANdA, the data flow from the correlator onwards will be about 4 times larger.
Hence even after the correlator, we must be able to move about 1 – 5GB/s into the pipeline, through the
processing steps, and eventually out to the CONRAD Data Store. Estimates of the processing load for
MIRANdA lie in the rage 1-10 Tflops.

Figure 5 Overall data flow for MIRANdA in spectral line mode

The flow of data and control around the CONRAD subsystems is as shown in Figure 6. CTOS is
responsible for controlling and monitoring all subsystems (red lines). The voltage data (purple lines)
stream from the array beam former(s) into as yet unspecified devices, which are out of scope for
CONRAD. The visibility data (green lines), which form the bulk of the data to be processed, stream from
the correlator, through a data conditioning subsystem, and through a router to the central processor and
the CONRAD Data Store.

A fundamental assumption is that the telescope is calibrated in real-time – essentially on a 20 minute
timescale, or faster. A global model of the sky is known with sufficient accuracy to allow single pass
estimation of calibration parameters, such as antenna gains, delays. The calibration parameters are
applied to the data from which they were derived, and also fed back to the telescope for application to
subsequent observations. Calibration parameters are applied as far upstream in the data flow as
possible.

The calibrated data are processed into images as soon as possible. The images are then analyzed by
extracting catalogs and then sent to the archive. Conversion to images may require all the data to be
present (e.g. to facilitate deconvolution), in which case the processing cannot proceed until all the

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 18 of 38

observations have concluded. In this situation, the pipeline must contain sufficient storage to hold at
least two complete observations.

The visibility data must be stored close to the processing (this point is elaborated in the next section).
This, combined with the fact that ~ 100+ machines may be required for the processing, means that less
than 1% of the data will be located on any given computational node. A typical spectral line observation
for MIRANdA would therefore deposit about 200-500GB of data per computational node. This is a large
amount of data to read and write within 12 hours – possible but pushing the limits of non-RAID
technology.

Meta data is likely to be much smaller in volume. It flows on a limited number of paths:

• CTOS controls and monitors all subsystems and writes the results into a monitor data base with
automatic ageing.

• The Telescope Policy Manager conditions the monitor data and sends processed information to
the CONRAD Data Store (CDS).

• The Central Processor queries the CDS for meta-data as needed for processing.

Hence the CDS does not communicate meta-data directly to any subsystem, apart from the central
processor. The only input of meta-data to the CDS is via the Telescope Policy Manager (TPM). The job
of the TPM is to implement a single centralized model for the telescope. The model filters and
conditions the vast amount of monitoring data into a smaller set of meta-data that will be used by the
Central Processor pipeline logic.

Figure 6 Schematic of data flow

A number of processes occur within this data flow. These are summarized, along with the timescales on
which they operate on data, in Table 2.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 19 of 38

Table 2 Timescales for important processes in the data flow

Timescale Subsystems Operations

~1 ns to ~ 100 ms Antenna beamformers,
correlator

Beam-forming, spectral analysis, correlation,
integration

~ 100 ms to ~10 s Data conditioner RFI excision, time and frequency integration,
data re-ordering, fast transient detection

~10 s to ~ 20 min Calibration pipeline Calculation and application of calibration
parameters, and feedback of parameters to
the control system

~ 10 s to ~ 12 hours Transient pipeline Detection and cataloging of transient
sources

~ 20 min to ~ 12 hours Imaging Pipeline Integration of spectral line cubes, updating
of continuum images

~ 12 hours Cataloging pipeline Extraction of source properties into catalogs

~ 12 hours to 1 year CONRAD Data Store Accumulation of survey

1 year + CONRAD Data Store Accumulation of multiple projects

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 20 of 38

6 The CONRAD Central Processor
In existing radio telescopes, astronomical data are usually stored in a single archive, and processed on
the desktop of the astronomer. The amount of data coming from new telescopes like MIRANdA,
meerKAT, and LOFAR is so large (terabytes per hour) that the data from a single observation have to
be stored and processed in a distributed way which can only be done on a large dedicated machine.
The amount of time to process the data is very limited. The processing has to be finished before the
next observation is done. It is important to note that by increasing the computational resources
available, it is possible to decrease the data processing time.

Two principal types of data have to be processed:

- Continuum data. For MIRANdA this will typically consist of 64 channels resulting in a visibility
data set of approximately 128 GBytes.

- Line data. For MIRANdA this will typically consist of 16384 channels resulting in a visibility data
set of approximately 34 TBytes.

The amount of data is so large, that care has to be taken that data are accessed and shipped around
as little as possible. Therefore the main motto of the Central Processor subsystem is: “Bring the
processes to the data and not the data to the processes”.

6.1 Processing tasks
Various tasks will be performed on the visibility data.

- Automated flagging to get rid of bad data points. The flagging can be based on prior knowledge
of RFI or on data statistics (such as deviation from the median). The RFI data base must be
updated if RFI is found.

- Calibration of the data by comparing predicted visibilities from a model with the measured
visibilities. This involves solving non-linear systems for the given model parameters. Most
calibration needs to be done on the continuum data. During calibration both instrumental (e.g.
antenna phases and amplitudes) and image plane parameters (e.g. pointing errors) can be
solved. The initial sky model for the observed field is derived from the global sky model.
Parameters solved in a calibration run can be used in another observation.

- Imaging and deconvolving the data. Image plane parameters (e.g. beam shape) can be
applied.

- Source finding in the image cube and updating the global sky model. Feature finding in an HI
line cube (e.g. using Duchamp [3]).

- Sources can be subtracted from the visibility data, so weaker sources can be found.
- Searching for transient sources by imaging each integration and looking for changes.

Besides source and feature extraction, image analysis and display may also be needed. Existing tools
can be used for this, but are unlikely to be able to process large image cubes efficiently. It may prove
necessary to add distributed processing capabilities to such tools.

Figure 7 Sequence of operations in a typical pipeline to construct a source catalog

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 21 of 38

The bulk of the overall processing load lies in the convolutional resampling step necessary for imaging
[5].

6.1.1 Data Sets
Several data sets are needed during the processing of the data.

1. Any visibility data format can be used by implementing suitable interface (DataAccessor) classes
filling as needed from visibility data (directly from the correlator and conditioner) and meta-data
from the CDS.

2. The image data are stored as AIPS++ images.
3. The calibration parameters must be held in a database.
4. The global sky model contains all known sources with their parameters. It can consist of a number

of catalogs. The initial model of the observed field is derived from it and stored in a table. New
sources are added to the table and will eventually be added to the global sky model.

5. HI source parameters are stored in an HI source database.
6. Newly found RFI is added to the RFI catalog during data flagging.

6.2 Visibility data distribution and processing

6.2.1 Calibration and imaging

We consider calibration and imaging as non-linear least squares problems: we observe some visibility
data to which we wish to fit models, incorporating both calibration (such as antenna gains) and image
terms (such as sky brightness). The fitting process is intrinsically non-linear but we decompose it into
iteration of two parts:

• Prediffer – finds gradients of the visibility function with respect to the unknown parameters, as
well as the overall residual visibility. These are then converted into normal equations.

• Solver – find solutions for the unknown parameters from the normal equations.

This split and terminology has been used at LOFAR. It is very well suited to distributed processing - the
prediffer step may be distributed over partitions of the data each residing on a different processor, but
the solution is most often global and must be calculated on a single processor.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 22 of 38

Figure 8 Central processor overview showing various classes of workers under the control of

one master. Each worker is responsible for dealing with some aspect of the overall data
processing.

6.2.2 Distribution of the data

The architecture of the data processing system has to be efficient with respect to IO, both disk and
network.

As described above, the observed visibility data must be stored in a distributed way. The best axes to
partition the visibility data are beam and spectral band. The image data can to be distributed in the
same way. With this data distribution, the foreseen processing tasks can be executed without sending a
lot of data between processes. Other partitions (e.g. in time or baseline) would require much more
communication for one or more of the tasks.

The advantages of partitioning data by beam and frequency band are:

- Each beam/band can be flagged independently. If a band is stored distributed, some data
exchange might, however, still be needed.

- Self-calibration needs to find solutions for a non-linear system. As described above, this uses a
solver and many prediffers. Each prediffer forms normalised equations by comparing the

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 23 of 38

predicted UV data with the measured UV data. This requires sending normal equation matrices
to a global solver, but usually they consist of few data.

- Dirty imaging can be done independently for each beam/band, and thus requires no data
exchange.

The disadvantages are that:

- Deconvolution requires that each imaging prediffer process send normal equations (essentially
a dirty image and point spread function) to a global solver (for solving the minor loop).
However, for the bulk line data this is needed only once.

- Stitching MIRANdA beams together requires the images of 8 neighbouring beams. Therefore
the beams should be stored on the same machine.

- Feature finding in an image cube is done in a separate program [3]. The program will be
parallelised. Similarly, source finding in a continuum data cube.

6.2.3 Master/worker control
Distributed processing requires specialised control. Several software design patterns (e.g.
master/worker, blackboard) exist that deal with distributed processing. As explained in CONRAD-SW-
0012 [4], the master/worker pattern is best suited for the type of processing that needs to be done.
The system consists of the following components:

1. The master has the overall control. It gets the step to perform from a higher-level interface (e.g.
a configuration file or a python script). It transforms such each step to one or more commands,
sends them to the workers, and coordinates all these commands. Another important task of the
master is to form the work domains as discussed in the next section. Only the master has the
full picture, thus the master has to do the main loop over the data domain. Of course, it does
not access any low level data.

2. The workers perform the actual work. There will be at least two types of workers:
a. A prediffer reads the visibility data and forms normalized equations. Furthermore a

prediffer can perform tasks like subtracting models and correcting data. The normal
equations may be for calibration parameters or for images.

b. A solver collects all equations and solves the system. The solution may result in
updated calibration parameters or updated images.

New types of work can easily be added, because the master does not need to interpret the data
received from workers. It only interprets a preamble and forwards the data to the correct worker.
Of course, the master does need to understand new types of high-level steps.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 24 of 38

Figure 9 Master/worker design for a simple calibration procedure where multiple prediffers are

used to send normal equations to one solver.

6.2.4 Interprocess communication
In principle there is no direct communication between workers. Instead all communication flows through
the master. In that way the master can synchronise the processing. However, there can be cases
where this can become a bottleneck. So when needed, the master can also be asked for assistance in
setting up a direct connection between workers.

The software will be able to use several types of communication. Support for MPI and for sockets will
be provided. MPI is useful for some supercomputers that do not support sockets or are optimized for
MPI.

6.3 Visibility Data Access
Due to the large amount of data, the number of times the data can be accessed is limited. Therefore the
data processing needs to be done such that as little IO as possible is done. This means that as many
processing steps as possible should be done on a chunk of data that can be kept in memory.

Each chunk of data is called a work domain, i.e. the domain that a worker can be held in memory. By
using selection (e.g. only long baselines) or by using data integration, the size of the work domain can
be reduced.
It will not be possible to perform all processing steps in a single iteration over data chunks. Some steps
will require different work domain sizes. It is important though to keep the number of iterations to a
minimum.

For calibration a work domain will usually hold all frequency channels and a limited time range. For
imaging, all times are needed, so only a limited number of channels can be held in memory. This
means that the visibility data are stored in a way that both access patterns can be dealt with efficiently.
One possible solution is to store continuum and spectral line data separately.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 25 of 38

6.4 Robustness
Due to the distributed nature of the system, it is vulnerable to failures of disks or machines.
Implementing sufficient duplication and fault handling code can increase robustness.

- Data can be replicated. This can be done using RAID systems or by writing the data twice or
even more times. This is especially important for the continuum data. Note that this makes it
possible to speed up the processing by using all copies. If there is no copy and a disk fails, the
data should be discarded.

- The master must be able to deal with failures in the workers. If possible, it transfers work to
another worker, otherwise the data are lost.

- A watchdog like process can be used to check if worker processes still exist and to restart them
if needed and possible. This can also be used to initially start all processes.

Robustness will be built in over time. The initial test system will not have much robustness.

6.5 Interface to Monitoring and Control
The Central Processor will appear as a single system to M&C (provided by CTOS), so only the master
process communicates with M&C. The M&C interface should be abstract in order to allow that an M&C
system need not be used or that another M&C system is used (e.g. for LOFAR).

M&C will mainly consist of monitoring the progress of the data processing. It has yet to be defined
which monitoring points will be built in. M&C does not have detailed control over the data processing.
M&C will monitor the hardware the data processing is running on.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 26 of 38

7 The CONRAD Data Store
The CONRAD Data Store (CDS) will store all the persistent data for a CONRAD telescope:

• Raw data (similar to the main table of visibility data set of AIPS++, the MeasurementSet) from
the Correlator, and Catalogue, image (cube), and calibration data from the Pipeline.

• Metadata from the Receivers, the Beamformers, the Correlator, Site Monitor, through the
Telescope Policy Manager.

• Observing proposals, observation descriptors, and logs from the Policy Manager of the
Telescope Control. These data may be called miscellanea.

The visibility data volumes for MIRANdA are substantial (many Terabyte per hour). The actual decision
as to whether the full spectral visibility data are to be retained in the CDS will be deferred to as late as
possible.

Metadata, miscellanea data, image headers, catalogue, calibration data will go to metadata
database(s). Several metadata databases may be used for searching efficiency. Raw data and images
will be stored in raw disk files and indexed by a database.

7.1 Internal use of the CDS

The telescope state is stored in two places – first, in the raw monitor data collected by CTOS and
stored in a Round Robin Database, and second, in a processed, filtered, and conditioned form in the
CDS.

Only three subsystems will access directly the CDS:

• CTOS sends the conditioned monitor data to the CDS via the Telescope Policy Manager, and
also performs high level monitoring of the CDS,

• The Data Conditioner sends visibility data to the local storage of the Central Processor and
optionally to the CDS

• The Central Processor queries the CDS for the meta-data necessary for pipeline processing. In
addition, the CP will send processing results to the CDS.

The Central Processor has considerable scratch storage available as needed for processing – perhaps
up to 1 TB per computational node. This scratch space is volatile and is not visible to or managed by
the CDS.

7.2 CONRAD Archive

The CONRAD Archive is the external interface to the CDS. This interface will enable the scientific
community, most likely astronomers and engineers, to access and use all scientific data obtained by the
telescope to do scientific research, to evaluate the performance and capability of the telescope, and to
examine historical behaviour of time-varying phenomena of the universe.

The next figure illustrates the entire CDS system and interface to the archive.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 27 of 38

Figure 10 CDS layering

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 28 of 38

8 User Interfaces
Before discussing the user interfaces it is worth describing, in broad terms, the kind of users we expect
to have to service with these UIs:

• Operators – responsible for the day-to-day scientific running of the facility.

• Maintenance staff – responsible for physical maintenance of the facility. They are also the first
line of problem solving.

• Engineers – handle escalated support issues as well as upgrade and bug fix existing
subsystems.

• Scientists – are the initiators of targeted scientific observations. They will be able to monitor the
progress of their particular experiment.

• External scientists – are those who need access to scientific data but are not involved directly
in the capture of this data.

• General public – is a consumer of high-level telescope information. This may include some
visitor centre requirement on the UI side.

• Students and educators – require appropriate level information between general public and
technical levels.

To service the needs of this diverse range of users we have adopted a two pronged approach to the
provision of user interfaces. We will have a web based interface that primarily serves the operators,
maintenance staff, external scientists and the general public.

A python based interface that exposes the telescope functionality in a slightly more raw form would be
of most use to the engineers and perhaps scientists directly managing their own experiments.

8.1 Web Interface
This is the primary interface that will serve the largest group of telescope users. Our requirements for
this interface are as follows:

• Rich – should provide all the functionality required by the target group in a single delivery
mechanism.

• Simple – this does not denote a lack of features, rather that these features are organised in
such a way as to provide a logical and understandable interface for the end user.

• Lighweight – the user should not have to download or install large plugins.

• Simple backend – we want to avoid complex third party web frameworks that will require
ongoing maintenance and support.

• Cross platform – all standard platforms (*nix, MacOS, Windows) should have easy and
standard access to the interface.

• Centrally managed – we must absolutely avoid the need to manage client software on the end
users machines.

At this stage it would appear that a web delivered application using modern lightweight techniques such
as AJAX can meet all of these requirements.

The diagram below shows the component breakdown for the web interface as it is currently planned:

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 29 of 38

Figure 11 User interface factoring

The interface view is split into two to organize the more technical and administrative functions in a more
logical grouping.

The user side is primarily concerned with managing and deploying system observations and
experiments. It provides for a relatively unsophisticated end user.

The technical side contains access to the monitoring system, provides for individual control of the
various subsystems, allows access to the LDAP repository, handles the configuration management
system and various other technical views.

8.2 Python Interface
The python interface provides for script and interactive shell access to the telescope as a whole.
Delivered as a python module that can be used directly in scripts or imported into an iPython shell for
interactive telescope control, this interface will be primarily aimed to engineers and advanced scientific
use.

Two major groups of functionality are delivered. The first of these are a range of high level system
commands that are wrapped up and exposed for ease of low-level access. For example we have
commands (primarily useful in the iPython environment) for accessing and browsing the LDAP
repository as if it were a local structure on disk:

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 30 of 38

This easy access allows for direct manipulation of the ldap repository without resorting to graphical
tools. Other functionality such as SNMP control, logging, and schedule management are also provided.

The second category is the exposure of all the system control and monitor points through an object
based hierarchy. This allows scripts to have easy raw access to the configuration of the system as well
as allowing the inclusion of monitoring data as feedback into these scripts. An example of this is shown
below:

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 31 of 38

This low level access will be derived directly from the MIBs for the various subsystems and as such will
include every control and monitor point on the facility. The first time in a session that an end point is
manipulated, LDAP information on the current IP and OID for that point are retrieved and cached.
Thereafter the cached information is used (LDAP modifications trigger a global cache reset).

In the example above it shows how multiple subsystems of the same type are handled by providing a
wrapper object with iterator behaviour.

For monitoring points direct access to the current live value is provided via get() whilst a list of the last n
points is available via get(n).

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 32 of 38

9 Deployment
Figure 12 shows the physical deployment of CONRAD on each telescope (MIRANdA and meerKAT).
The diagram presents only external connectivity and does not describe the internal components of each
node and their relationships.

The default workstation used on each physical node is Intel/AMD (x86 or x86-64 architecture) based
PC running the linux operating system. Although some subsystems cannot be deployed in the default
workstation, our design approach is to use the default platform as much as possible among the
subsystems to keep maintenance cost at minimum (homogeneous system).

Two physical networks co-exist in the system: a high-speed data network for exchanging visibility data
sets and an inexpensive network (ethernet) for monitoring and control. The network layout will take
advantage of virtual local area network (VLAN) as much as possible.

Figure 12 Physical deployment of CONRAD

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 33 of 38

A more detailed description of each physical node in the deployment diagram is outlined in the following
subsections.

9.1 Antenna Control
A dedicated workstation (linux x86 or x86-64) is to be used to control each antenna. The responsibility
of the antenna control computer is to pass (and convert) the control commands from CTOS to the
antenna as well as return monitoring information via SNMP interface.

9.2 Time Server
The time server is responsible to supply accurate time reference to the rest of the subsystems. It is
connected to the reference time generator (atomic clock, GPS), which provides the accurate clock.
Sub-systems implementing hard real-time control must know the time with 1 microsecond accuracy.
High time accuracy is obtained using specialized hardware and connection to the time server. Sub-
systems that do not require accurate time synchronization can obtain the time via network time protocol
(NTP). No hard real-time closed loops are implemented within CTOS.

The time server consists of a Linux x86 or x86-64 workstation connected to the monitoring and control
network via ethernet card. Monitoring information relevant to the operation and maintenance of the time
is pass to CTOS via SNMP interface.

9.3 Site Monitoring Station
The site monitoring station is responsible for acquiring all the environmental and site information and
sends them to CTOS via SNMP interface, such as power information, local weather, temperatures,
humidity, etc. A linux x86 or x86-64 connected to the monitoring and control network via ethernet card
will be used.

9.4 Beamformers
The focal plane array beamformers are present only in MIRANdA. Array beamformers will be present in
both telescopes. The target hardware is yet to be defined. Each beamformer is connected to the
monitoring and control network and provides monitoring and control information (such as weights) via
SNMP interface.

9.5 Correlator
The correlator is responsible to produce the visibility data. Hardware implementation is yet to be
defined. The correlator output is connected directly to the data conditioner via a dedicated parallel link.
The correlator is also connected to the monitoring and control network and provides monitoring and
control information to CTOS via SNMP interface.

9.6 CONRAD Data Conditioner (CDC) and Router
The CONRAD data conditioner (CDC) is responsible for flagging and averaging the visibility data. The
output goes directly to the router via a dedicated parallel link. The router distributes the data to the
CONRAD data store (CDS) and the central processor (CP). Both the CDC and router hardware
implementations are yet to be defined. Both the CDC and router are connected to the monitoring and
control network and provide monitoring information to CTOS via SNMP interface. The CDC may need
access to meta data to perform its function.

9.7 Central Processor (CP)
The CP is responsible of processing and calibrating the data. For more detailed information about the
responsibilities of the CP, see Section 6.

It is clear that to fulfill the strong requirements on processing speed and volume of data to be processed
a high performance machine is needed. Furthermore a high disk-IO bandwidth is needed to achieve the
required processing speed.

If the data are split in frequency, the processor interconnect bandwidth does not need to be very high.
Gigabit ethernet will probably be sufficient, but the demands of flagging, image deconvolution, and
source and feature finding are not clear yet.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 34 of 38

The central processor is also connected to the monitoring and control network to exchange monitoring
and control information via SNMP interface as well as to the CDS to exchange metadata information via
customized interface (possibly using sockets).

The final hardware to be used is not defined yet. However several alternatives are being evaluated:

1. A cluster of multi-processor, multi-core systems. Preferably the cluster must be homogeneous, but
it could be an option to have powerful machines for processing the more demanding jobs like the
continuum data. The cluster nodes may optionally have accelerators such as the Cell processor,
GPU or FPGA.

2. A supercomputer like the Cray XT3 or IBM BlueGene/L.

The software architecture is such that is possible to adapt to different platforms with the development of
some specialised code for the accelerators.

We plan to equip each computational node with sufficient memory to minimise unnecessary disk
accesses. The memory bandwidth must be sufficient to keep all cores supplied with data.

When using a cluster a few disk storage options can be used:

1. One or more local disks can be attached to each machine
2. For fault tolerance, a RAID can be attached to each machine or some machines (e.g. only the

machines processing continuum data).
3. The cluster can be subdivided into smaller parts (with faster interconnects) and a large RAID

system attached to each part. Optionally all these RAIDs can be combined into one parallel file
system (e.g. Lustre).

For the Central Processor needs, the key parameters to evaluate between the alternatives are:

• Compute to I/O ratio matches the data processing needs.
• Cost.

At the moment is not yet clear what the compute to I/O ratio should be. However, we believe that the
most cost effective solution is more likely to be a commodity cluster.

9.8 CONRAD Data Store (CDS)
The CDS is responsible of storing the raw and reduced data as well as metadata for later access. For a
detailed description of the CDS, see Section 7. The hardware platform and RDBMS are yet to be
defined. Although the metadata does not require vast amounts of disk space, the visibility data and
image cubes do require a high-volume storage device (hundreds of TB) yet to be defined.

9.9 CONRAD Telescope Operating System (CTOS)
CTOS provides high-level control and is also responsible for managing all the monitoring information
coming from all the subsystems. For more detailed information see Section 4.1. CTOS is deployed in
one or two linux x86 or x86-64 workstations connected to monitoring and control network via Ethernet
cards. Final component deployment on each workstation is yet to be defined. The Telescope Policy
Manager (TPM) component exchanges metadata information with CDS using a customized interface
via the monitoring and control network.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 35 of 38

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 36 of 38

10 CONRAD software development processes
CONRAD software development processes do not enforce a specific architecture. They have been set
up to support the project philosophy as described in section 3 and to facilitate geographically distributed
development.

10.1 Structure
The CONRAD repository is split into three main areas:

• 3rdParty - packages not under development by the CONRAD team
• Code - packages implemented and maintained by CONRAD developers
• Tools - packages to enable building of code and documentation as well as testing frameworks.

Figure 13 Repository Structure

(Coloured nodes are fixed repository names, white boxes show example packages)

10.1.1 Code

The CONRAD Code repository in turn consists of three main functional groupings:

• Base - common libraries and utilities
• Components - CONRAD work areas, which are shared by the collaboration
• Projects - partner specific integrated systems, e.g. xdm, Parkes testbed

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 37 of 38

10.1.2 3rdParty

Where possible, commonly used, well-established third party packages should be used for
implementations. However, before these can be added to repository permanently a moderation process
is required. This prevents bloating and possible duplication of functionality.

10.1.3 Tools

External and internal packages to facilitate the build process

10.2 Dependency Rules

The following dependency rules ensure a non-monolithic, extensible software system.

• 3rdParty packages can only depend on other 3rdParty packages.
• Base packages can depend on 3rdParty and could depend on other base packages.
• Components can depend on other Components as well as Base and 3rdParty
• Projects cannot depend on other Projects, but depend on all others.

Figure 14 Dependency Hierarchy

10.3 Software Development Life Cycle

The software development life cycle is facilitated through an iterative development process.
To deal with dynamic functional requirements and architectural changes, well-defined guidelines for
testing procedures are put in place, as well as design and code reviews.

CONRAD Architecture
 Issue 1.0

2007/06/02

CONRAD-SW-0011 Page 38 of 38

