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1 Introduction

The survey speed and uniformity of sensitivity over an area imaged by
ASKAP are influenced by the parameter values chosed for the observation.
Survey speed depends on familiar parameters such as collecting area, band-
width and integration time, but also on the PAF field-of-view and the ar-
rangement of beams within it. A full estimation of likely survey speed relies
on measurements of performance. Now, with a partially equipped array, the
performance measurements are becoming complete enough to attempt some
realistic forecasts.

The subject of this note is the generation of such forecasts and the impact
of the choice of particular observing parameters: the number, spacing and
arrangement of the formed beams. The forecasts presented here can be
compared with estimates made from theoretical models of phased array feeds
reported by Bunton & Hay (2010).

2 Survey speed

Johnston et al. (2007) give an expression for survey speed for an interferome-
ter with N antennas of area A observing over bandwidth B. The expression
gives the area of sky that can be surveyed in one second to a depth equivalent
to image noise of σs:

SSs = FBnp

(
ANεaεcσs

2kT

)2

(1)
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Here np is the number of polarizations, εa and εc are aperture and correlator
efficiencies, T is the system temperature and k is Boltzmann’s constant. F
is the field of view. The expression for SSs can be rewritten in terms of the
measurable quantity SEFD (System Equivalent Flux Density):

SEFD =
2kT

Aεaεc
(2)

so

SSs = FBnpN
2σ2sw (3)

where

w =
1

SEFD2 (4)

We measure the SEFD at beam centres, but the effective SEFD over a
beam varies inversely with the relative beam gain. Thus, correcting an image
for the beam attenuation off-axis increases the image noise away from beam
centre. Let SEFD0 be the measured quantity, then in the image corrected
for beam attenuation:

SEFD(l,m) =
SEFD0

A(l,m)
(5)

where A(l,m) is the normalised antenna (or beam) power pattern. Recog-
nising that SEFD (and so w) varies over the field of view, write the survey
speed expression as:

SSs = BnpN
2σ2s

∫ ∫
FoV

w(l,m) dl dm (6)

where l,m are direction cosines and the integral is over the PAF angular
field-of-view. Recent measurements allow us to estimate w(l,m).

3 Uniformity of survey sensitivity

The survey speed expression relates to the integral of sensitivity, indepen-
dent of the varition of sensitivity over the field of view. If w has large
variablity with (l,m), a more uniform sensitivity can be achieved by divid-
ing the observing time between a number of pointings with no loss of total
survey speed. This shifting of pointing position is referred to as interleaving.
ASKAP forms up to 36 beams within its field-of-view. The best interleaving
strategy will depend on both the arrangement of beams (the footprint) and
the form of the overall envelope of sensitivity across the field of view. The
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recent measurements allow some estimation of this sensitivity envelope—the
apodizing function—to be made.

Interleaving can be done by cycling the telescope pointing between the
several centres during the course of a single synthesis observation, with some
loss of integration time to the associated overheads. Alternately, if the total
integration time required is sufficient, the different interleaving points can
be observed uninterrupted for separate observations.

4 Beam-to-beam correlation

Beams are formed as the weighted sum of signals from PAF elements. In
general, any two beams will have some PAF elements in common so that
their signals are not completely independent. The degree of correlation be-
tween them rises with decreasing angular separation. As a consequence, the
linear mosaic of images made from a set of PAF beams will have more image
noise than would be achieved from a set of images with independent noise.
An estimate of the correlation coefficient as a function of beam separation
is given here (see ACES memorandum 014 for details.)
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Figure 1: The modelled correlation coefficient between visibilities for two
beams as a function of their separation. Beam weights for each PAF element
are assumed to be proportional to the amplitude of the signal received by
that element. The model is constructed from an idealised 2-dimensional
Airy voltage pattern.
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The Figure 2 below illustrates the limiting effect of the correlation. When
images are formed from independent observations, so that the noise in each
beam is mutually independent, the linear mosaic has improved sensitivity
in the region of overlap as shown in the left hand panel; each curve shows a
different spacing of beams. The total survey speed achieved is proportional
to the integral under the curves, which is invariant with beam spacing. On
the right, once the beam-to-beam correlation is included, there is significant
penalty in arranging beams too closely: the integral decreases with beam
separation.

The sensitivity in the PAF field-of-view can nowhere exceed
that in the centre of a single beam.
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Figure 2: Observation weight for different beam spacings with no beam-
to-beam correlation (left) and with the expected correlation (right). The
quantity plotted is the profile of inverse-variance, relative to the inverse
variance of a single bore-sight beam, over a set of six evenly spaced beams.
The four traces correspond to beam spacings 0.5 (dark), 0.7, 0.85 and 1.0
(light) times the beam FWHM.

5 Measured apodizing function

The sensitivity of ASKAP beams is expected to fall with increasing angular
distance from the boresight. A large part of this decrease is due to in-
creasingly large parts of the antenna’s diffraction pattern on the focal plane
moving off the sensitive portion of the PAF as the beams’ angular displace-
ment increases. For this analysis we model the system with a set of beams
of identical sensitivity that are attenuated by an “apodizing” function, the
sensitivity envelope that defines the PAF field-of-view. The form of the
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apodizing function was established as follows. Measurements of SEFD were
made for each beam in four different footprints, the 6×6 square and hexago-
nal footprints (square 6x6, hexagon36) at position angles 0 and 45 degrees.
For each footprint the relative sensitivity for each beam i was calculated as
SEFDmin/SEFDi. Values of the SEFD were calculated for each of the 12
antennas for each beam over the frequency range 1376.5 - 1424.5 MHz. The
spectral median was used for SEFDi. A relative sensitivity surface was de-
termined for each antenna by gridding the data onto a regular grid over the
field-of-view. The mean surface over 11 antennas (AK13 produced anoma-
lous results for several of the observations) was adopted as a representative
measure of the apodizing function, and is shown at left in Figure 3. To
provide an analytic apodizing function for the survey-speed calculations in
this memo, the measured surface was fit to a family of functions, symmetric
about the centre of the field.

Figure 3: Left: Measured estimate of the relative sensitivity envelope—the
apodizing function—over the PAF field-of-view; coloured contours lie in even
steps from 0.05 to 0.95. Centre: Best-fit model to the measurement on the
left; the functions used in the model are constrained to be symmetric. Right:
Envelope model rotated 45 degrees.

The quasi-rectangular footprints in general use are usually aligned with
celestial coordinates, and so at 45 degrees to the natural orientation of the
field-of-view. A better fit, and therefore survey speed, is achieved with either
the footprint or the PAF rotated 45 degrees. In this memo we have assumed
that the PAF is rotated for observations, so that the function in the right
hand panel of Figure 3 is used for sensitivity calculations.
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6 Variation of survey speed with beam pitch

For a given footprint, the value of w̄ =
∫ ∫

FoV w(l,m) dl dm varies with beam
separation. Because the beam-to-beam correlation limits the sensitivity of
mosaiced overlapping beams (see Figure 2), the value of w̄ increases with
increasing pitch up to a certain level. Beyond that pitch, w̄ decreases because
the outer beams become attenuated by the apodizing function. Figure 4
illustrates this.
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Figure 4: Variation of w̄ with beam pitch, relative to the value obtained
from the fictitious case of no attenuation from an apodizing envelope and
no beam-to-beam noise correlation. The dashed line shows the effect of
a realistic apodizing but with no beam-to-beam correlation. The solid line
includes the effect of correlation between beams. The survey speed obtained
from both the correlated and uncorrelated footprints declines as the beams
move to the outer parts of the field-of-view. For the realistic case with
correlated noise, sensitivity improves as the beam overlap decreases until
the edge of the PAF field-of-view is reached. For this simulation a square
6× 6 footprint was used with model ASKAP 1.4GHz beams.
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7 Beam footprints and interleaving schemes

In the following sections we model performance for a number of specific beam
footprints. Each has its own natural interleaving scheme depending on its
geometry. The aim of interleaving is to have a sequence of pointings that
place beam centres in the sensitivity depressions of the previous pointing in
the sequence. The square footprints (square 6x6, square 5x5) have one de-
pression for each beam so a pair of pointings can produce a square grid with
spacing 1/

√
2 times the spacing of the single footprint. The footprints with

hexagonal geometry (closepack36, closepack30) have two depressions per
beam, so a set of three pointings is necessary to form a new uniform hexag-
onal grid, which has beam spacing 1/

√
3 times the spacing of the single

footprint.

The special rectangular footprint invented by Josh Marvil, rectangle 6x6,
has beams on a rectangular grid with beam pitches p and p

√
3/2. With three

additional pointings a hexagonal grid can be formed with final beam spacing
p/2.

Figure 5 shows the three types of beam grids.

Figure 5: Three interleaved footprints: square 6x6 (left), closepack36

(middle) and rectangle 6x6 (right), requiring two, three and four inter-
leaved pointings respectively. Each beam is numbered, and coloured ac-
cording its pointing, in order white, blue, yellow, red. All three footprints
displayed were constructed with beam pitch p = 1.0◦.
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8 Optimising at selected frequencies

Using the assumed apodizing function and the beam-to-beam correlation
model, for a given footprint and observing frequency we can estimate the
beam pitch that gives the highest survey speed. From the model we can
determine the equivalent area of the observation and the residual ripple,
before and after interleaving. These quantities are given in Figure 6.

Some points to be noted:

• The smaller footprints (those with fewer beams) tolerate a larger pitch.
• The survey speed is maximised by using all 36 beams, independent of

arrangement and frequency.
• For the 36-beam footprints, frequency is the main determinant of

equivalent area.
• Even for the square footprints, the sensitivity ripple after interleaving

(e.g. 1% at 1400 MHz with square 6x6) is much less than the sensi-
tivity variation across the field-of-view from the apodizing function.
• The results here are critically influenced by the form of the apodizing

function. More work is needed to estimate the level of uncertainty in
the current model.

Figure 7 shows how critically survey speed depends on beam pitch.

9 Nyquist sampling the sky

To be maximally sensitive to very extended sky emission, the spacing of
beam positions across the imaged region should satisfy the Nyquist sampling
criterion (Cornwell 1988). The miriad manual gives this criterion for both
square and hexagonal grids of beam placement. The spacings corresponding
to the Nyquist sampling limit are:

θsqu =
λ

2D

θhex =
2√
3

λ

2D

(7)

Figure 8 plots the ratio of post-interleaving beam spacing for square and
hexagonal footprints to their respective sampling limits. After mosaicing
the interleaved pointings, the beam spacings, for pitch p are p√

2
and p√

3
for square and hexagonal footprints respectively. After the four pointings
needed to interleave the rectangular footprint the beam spacing is p/2.
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Figure 6: From top to bottom the plots show as a function of frequency:
the beam pitch that optimises survey speed; the optimised survey speed;
the equivalent area; the ripple of the optimised footprint before and after
interleaving. The model was evaluated at the four indicated frequencies; a
smooth curve joins the calculated values. The ripple is computed as (max-
min)/mean over a portion of the centre of the mosaiced field. The equivalent
area of the single observation (not interleaved) is shown and is calculated as∫ ∫

FoV w(l,m) dl dm

wmax
. The survey speed values were computed using SEFD0 =

1900Jy in equation 5, and equation 6 with B = 300MHz, np = 2, N = 12
and σs = 100µJy.

9



Figure 7: Dependence of survey speed on beam pitch for the set of footprints.
The survey speed values were computed using equation 6 with B = 300MHz,
np = 2, N = 12 and σs = 100µJy.

10 Footprint displays

The following figures show the footprint at their optimum pitch. There are
three panels for each footprint-frequency combination. They show: Left:
beam position relative to the assumed apodizing function 1/

√
2 contour;

Centre: sensitivity map of a single non-interleaved observation; Right: sen-
sitivity map of the mosaiced interleaved observations.
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Figure 8: Ratio of beam spacing to the Nyquist sampling limit: λ
2D and

2√
3
λ
2D for square and hexagonal footprints, respectively. The rectangular

footprint results in a hexagonal grid after interleaving, so the latter factor
is used for it. The beam spacing used is that of the mosaic of all interleaved
pointings.
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Figure 9: Footprint square 6x6 at 800, 1100, 1400, 1700 MHz (top to bot-
tom).
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Figure 10: Footprint square 5x5 at 800, 1100, 1400, 1700 MHz (top to
bottom).
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Figure 11: Footprint rectangle 6x6 at 800, 1100, 1400, 1700 MHz (top to
bottom).

14



3 2 1 0 1 2 3

degrees

3

2

1

0

1

2

3

d
e
g
re

e
s

012345

67891011

121314151617

181920212223

242526272829

303132333435

0
.7

1

closepack36

3210123

degrees

3 2 1 0 1 2 3

degrees

3 2 1 0 1 2 3

degrees

3

2

1

0

1

2

3

d
e
g
re

e
s

012345

67891011

121314151617

181920212223

242526272829

303132333435

0
.7

1

closepack36

3210123

degrees

3 2 1 0 1 2 3

degrees

3 2 1 0 1 2 3

degrees

3

2

1

0

1

2

3

d
e
g
re

e
s

012345

67891011

121314151617

181920212223

242526272829

303132333435

0
.7

1

closepack36

3210123

degrees

3 2 1 0 1 2 3

degrees

3 2 1 0 1 2 3

degrees

3

2

1

0

1

2

3

d
e
g
re

e
s

012345

67891011

121314151617

181920212223

242526272829

303132333435

0
.7

1

closepack36

3210123

degrees

3 2 1 0 1 2 3

degrees

Figure 12: Footprint closepack36 at 800, 1100, 1400, 1700 MHz (top to
bottom).
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Figure 13: Footprint closepack30 at 800, 1100, 1400, 1700 MHz (top to
bottom).
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