Luneburg Lens: Electromagnetic Design Options

What do we need to consider to do a design / evaluation:

- Material requirements
- Lens structure
- Constructional aspects
- Feed Systems
- Hierarchy
- Modelling and Design

Material Characteristics

- Low loss materials / loss profile
- Usable dielectric constant range
- Homogeneity
- Compatibility
 - varying density foams
 - loaded foams (artificial dielectrics etc.)

Lens Structure

- Layered Hemisphere
 - gradation and uniformity
 - airgaps and misalignments
 - deformations
 - obstructions
- Ground Plane
 - size and structure
 - discontinuities and imperfections

Constructional Aspects

- Effect of supporting structure
- Effect of feeds and feed network
- Effect of cabling and mechanical control
- Effect of multiple lenses in a station
 - scattering and blockage effects
 - beam / sidelobe structure
 - realistic coverage envelope

Feed Systems

Wide band line feeds

Line feed arrays (phased / BFN ?)

- band segments wideband array design?
- polarisation
- imaging

Multibeaming - multiple line feeds Spot beams (calibration, interference rejection etc.)

Hierarchy

- Number of lenses per station
- Number of independent beams / feeds
 - blockage limitation
- System design
 - optics
 - antenna array and elements
 - electronics
 - sampling
 - fibre-optic data links

Modelling and Design

Size of problem space for lens modelling

resolution to 2 GHz for cell size (eg. FDTD)
0.5 cm resolution = 4 x 10⁹ storage

Feed array and antenna element design
Ground plane and structural simulation

approximation techniques