<u>Sensitivity of Pulsar Timing</u> <u>Arrays to Individual Sources of</u> <u>Gravitational Waves</u>

Southern Cross Astrophysics Meeting 18th June

Daniel Yardley ATNF/USyd. Supervised by B. Gaensler and G. Hobbs.

Collaborators

Rick Jenet;

Zhonglue Wen; George Hobbs

Talk Outline

- Crash course in GWs and pulsar timing
- The project I'm involved in
- Detection algorithm & sensitivity curves for some different observing scenarios
- Sensitivity of PPTA data collected up to 2006

Brief intro: Gravitational Waves and Pulsar Timing

- A GW is a periodic distortion of space-time; stretching / compressing
- Pulsar timing compares
 <u>observations</u> of a pulsar to a <u>model</u> for its behaviour
- The model does <u>not</u> include GWs, hence we observe GWs in the timing <u>residuals</u>

The Project

- Use simulated & real data to constrain rate of coalescence of supermassive black hole binaries (SMBHBs)
- Non-detection
 Imit

Image source: http://www.srl.caltech.edu /lisa/graphics/lisa_black_hole_binary.jpg

Science background

• Timing residuals induced by GWs from black hole binaries:

 $A_{res} = \frac{h_s}{\omega} \times geometrical \ terms \times polarization$ where ω is GW frequency, h_s is GW strain from a single SMBHB, A_{res} is amplitude of pulsar timing residual

GW Signals Removed by Fitting

 $J0613-0200 \text{ (rms} = 0.268 \ \mu \text{s}) \text{ pre-fit}$

 $J0613-0200 \text{ (rms} = 0.430 \ \mu \text{s}) \text{ pre-fit}$

 $J0613-0200 \text{ (rms} = 0.076 \ \mu \text{s)} \text{ pre-fit}$

Detection Algorithm (1 of 4)

- Simulate TOAs for each pulsar using "fake" plugin, TEMPO2
- Residuals have flat power spectrum

shuffling residuals produces statistically equivalent data sets

J1713+0747 (rms = 0.100 μ s) pre-fit

MJD-51752.5

Detection Algorithm (2 of 4)

- Use shuffling technique to produce 100,000 stat'ly equiv. data sets.
- Take Lomb periodogram of each
- Set power threshold in <u>each</u> frequency channel at 100th highest power (i.e. 0.1% false alarm probability)

Detection Algorithm (3 of 4)

 Now find factor "α" such that "α × thresholds" gives 0.1% probability for no measured power above threshold in <u>any</u> channel

 Create 1,000 new data shuffles, add in GW at particular ω and h_s

Detection Algorithm (4 of 4)

- If measured power is above (second, higher) threshold - detection is made
- Look at (ω, h_s) combinations that give a detection 95% of the time (so 950 / 1000)

• Run simulations on Swinburne Supercomputer

Simulation Results (1 of 6): Scenarios Chosen

Scenario	NumPsrs	RMS (ns)	Timespan	
Arecibo I	1	10	5 / 10 / 15	
Arecibo II	5	10	5 / 10 / 15	
PPTA	20	100	5 / 10 / 15	
NANOGrav	40	100 / 500	5 / 10 / 15	
SKA I	100	100	5 / 10 / 15	
SKA II	100	10	5 / 10 / 15	

Simulation Results (2 of 6): Pulsars chosen

Purple crosses show pulsars used in SKA simulation.

Dec=+90° ☆ RA=24^h 8 RA=0^h * 0 ☆ ∘ °⊙ ★ √ O 0 🛠 Parkes TA pulsar Dec=-90° OP = 2mso P = 5 msFilled: S1400 > 2 mJy

Subset of the 100 pulsars on the sky.

Chose pulsars with period < 60ms, period deriv. < 1e-17

(Perhaps not for a timing array)

Simulation Results (3 of 6): PPTA Sensitivity Curves

Simulation Results (4 of 6) PPTA vs. NANOGrav

Sensitivity Curve for 5 years of data, 20 pulsars Extra 20 10⁻¹¹ pulsars with **Strain Amplitude (h**, 10-15 10-13 10-14 500ns timing 10⁻¹³ residuals do 10⁻¹⁴ not increase 10⁻¹⁵ the 10⁻¹⁶ 10⁻⁴ 10⁻² 10⁻³ sensitivity to Frequency (cycles/day) individual sources!

Simulation Results (5 of 6) SKA 10ns Sensitivity Curves

Simulation Results (6 of 6): Comments

Sensitivity † as observing timespan † Sensitivity † as number of pulsars † Sensitivity † as rms residual ↓ all as expected

- Greatest sensitivity is very near $\frac{1}{T_{obs}}$ in case of white residuals
- In detection regime, $h \propto \omega$ due to amplitude of residual being frequency-dependent

Results for PPTA (up to 2006) (1 of 3)

- White datasets from 7 pulsars used
- Still use shuffling technique

Pulsar Observations Used for this Analysis					
Pulsar	Telescope	Span (days)	Ν	rms Residual (µs)	
J0437-4715	Parkes	815	233	0.12	
J1024-0719	Parkes	861	92	1.10	
J1713+0747	Parkes	1156	168	0.23	
J1744-1134	Parkes	1198	101	0.52	
J1857+0943	Arecibo/Parkes	7410	398	1.12	
J1909-3744	Parkes	866	2859	0.29	
J1939+2134	Parkes	862	231	0.21	

TABLE 2

Table from Jenet, F.A. et al., 2006, ApJ, 653, 1571-6

J0437-4715 (rms = 0.116 μ s) pre-fit

J1857+0943 (rms = 1.133 μ s) pre-fit

Results for PPTA (up to 2006) (2 of 3)

- Thresholds for detection using real data
- Note lack of aliasing due to irregular sampling

Results for PPTA (up to 2006) (3 of 3)

- Sensitivity curve for real data (7 pulsars)
- Shortest data span = 815 d = (1/1.2e-3) d
- Breadth of 1yr peak probably due to oversampling.

Next Steps...

- Do simulations including stochastic background (so far have used unrealistic assumption of whiteness)
- Use fully updated PPTA datasets (~600 more days on each pulsar)

THE END

Simulation Results (of): NANOGrav Sensitivity

Arecibo 5 psr Sensitivity Curves

Simulation Results (5 of 6)

 Can include a stochastic background also.
 Shown here -

$$h_c(f) = 10^{-16} f^{-\frac{2}{3}}$$

• Had a few issues with this...

 $h_{s} = 4\sqrt{\frac{2}{5}} \frac{(GM_{c})^{5/3}}{c^{4}D(z)} (\pi f(1+z))^{2/3}$