

Pulsar Stability

SWINBURNE UNIVERSITY OF TECHNOLOGY

(and A New Limit on the GWB* from Pulsar Timing)

Joris Verbiest Swinburne University & ATNF

Matthew Bailes (Swin) Richard Manchester (ATNF) George Hobbs (ATNF) William Coles (UCSD) Andrea Lommen (F&M)

*: GWB = Gravitational Wave Background

- High precision timing of MSPs*
- Long-term timing stability
- Simple GWB limit technique
- Conclusions

Quick Basics of Pulsar Timing

Basic Method:

 Theoretical Model
 <u>- Actual Pulse Arrival Time</u>
 = Timing Residual

Time (10 years)

 $\int n_e dl = vt + \frac{1}{2}\dot{v}t^2 + D\frac{0}{f^2} - \frac{1}{c}(\vec{r}\cdot\hat{s}) + \frac{V_T^2t^2}{2cd} - \frac{(\vec{r}\times\hat{s})^2}{2cd}$

Long-term Stability of MSPs

GWB sensitivity requires: (Jenet et al., 2005)

- High timing precision ($\sim 10^2$ ns)
- Long observing campaigns (~10¹ yrs)

⇒ Highly stable MSPs

Expected GWB signature

(Figure courtesy of G. Hobbs)

Stability: Observations

• 12 years (avg.) on 20 PPTA* pulsars

*: PPTA = Parkes Pulsar Timing Array

Stability: Observations

- 12 years (avg.) on 20 PPTA* pulsars
 - 2: clear timing noise (J1939+2134, J1824-2452)
 - 2: some evidence for timing noise (J0613-0200, J1024-0719)
 - 4: sub-µs timing

(J0437-4715, J1909-3744, J1713+0747, J1744-1134)

- 12 remaining: white noise, µs-level rms

- average: 2.2 µs rms

*: PPTA = Parkes Pulsar Timing Array

Stability: Conclusion & Prospects

• Mostly stable, but high noise levels

Detection prospects look good, provided:

- New instruments (bandwidth, resolution)
- New calibration methods
- New software
- New pulsars (surveys)
- Collaboration (more, bigger telescopes)

GWB vs. Pulsar Spectrum

Previous Limits in Literature

• Kaspi, Taylor & Ryba, ApJ, 1994

- Thorsett & Dewey, Ph. Rev. D, 1996
- McHugh et al., Ph. Rev. D, 1996
- Jenet et al., ApJ, 2006

Earlier Limit Problems

- No GWB simulations all analytic
 - Fitting, jumps & sampling effects
 - Hard Statistics

• White residuals required (Jenet et al., 2006)

Then

- GWB simulation software
 - (Hobbs et al., 2008)
 - Monte-Carlo simulations
- Red noise allowed

Details to be Worked Out

• Precise weighting (i.e. combination of frequencies)

Combination of Pulsars

Spectral leakage

Steep spectra

No (New) Limit

Conclusions

• MSPs are intrinsically stable

Limits are useful too

Promising new limit coming soon

Gravitational Wave Effect

Results (Summary)

		No.	JName	\mathbf{rms}	Timespan	Npts
		1	J1909-3744	$167\mathrm{ns}$	$5.2 \mathrm{\ yrs}$	893
		2	J0437-4715	$199\mathrm{ns}$	$9.9 \ \mathrm{yrs}$	2847
		3	J1713+0747	$360\mathrm{ns}$	$14.0 \ \mathrm{yrs}$	380
ng	GC -	4	J1744-1134	$622\mathrm{ns}$	$13.2 \mathrm{\ yrs}$	369
		5	J1600-3053	$1.19\mu { m s}$	$6.8 \ \mathrm{yrs}$	478
		6	J1857 + 0943	$1.22\mu { m s}$	22.2 yrs	382
		7	J0613-0200	$1.54\mu{ m s}$	$8.2 \ \mathrm{yrs}$	190
		8	J1022 + 1001	$1.61\mu { m s}$	5.1 yrs	260
		9	J2145-0750	$1.81\mu{ m s}$	$13.8 \ \mathrm{yrs}$	377
		10	J1824-2452	$2.01\mu{ m s}$	$2.3 \ \mathrm{yrs}$	76
		11	J1603-7202	$2.09\mu{ m s}$	12.4 yrs	242
		12	J2129-5721	$2.28\mu{ m s}$	12.5 yrs	179
		13	J1730-2304	$2.51\mu{ m s}$	$14.0 \ \mathrm{yrs}$	180
		14	J1643-1224	$2.58\mu{ m s}$	$14.0 \ \mathrm{yrs}$	276
		15	J1732-5049	$3.39\mu{ m s}$	$6.8 \ \mathrm{yrs}$	129
	Noise	16	J0711-6830	$3.61\mu{ m s}$	$14.2 \mathrm{~yrs}$	236
		17	J1024-0719	$4.18\mu{ m s}$	12.1 yrs	262
		18	J2124-3358	$5.42\mu{ m s}$	$13.8 \ \mathrm{yrs}$	423
		19	J1045-4509	$6.31\mu{ m s}$	$14.1 \mathrm{\ yrs}$	364
		20	J1939+2134	$20.1\mathrm{ns}$	23.3 yrs	654

Timi

GWB vs. Pulsar Spectrum

