A New Signpost for Galaxy Mergers: Offset AGN in Galaxy Merger Remnants

> Julie Comerford University of California, Berkeley June 17, 2008

with Marc Davis, Brian Gerke, Jeff Newman, and the DEEP2 Team

Difficulty of Measuring Merger Rates

Galaxy merger rates measured via:

<u>Close dynamical pairs of galaxies</u> May not be good proxies for mergers, simulations show (e.g., Berrier et al. 2006)

<u>Galaxy morphologies</u> Percentage of galaxies are misclassified (e.g., Lotz et al. 2008)

Merging Black Holes in Galaxies

Komossa et al. 2003

Typical AGN Spectrum

AGN is at rest with respect to the host galaxy

Dual AGN

Early-type galaxy at z = 0.709

Double-peaked [O III] emission lines separated by 630 km/s

Galaxy hosts a <u>dual AGN</u>: Two AGN moving within the host

Gerke et al. 2007

Offset AGN

<u>Offset AGN</u>: One set of AGN emission lines offset in velocity from the galaxy's stars Implies that galaxy hosts an

galaxy hosts a AGN and a quiescent SMBH Early-type galaxy spectrum:

Systematic Search for Dual and Offset AGN in DEEP2

DEEP2 Galaxy Redshift Survey

Spectra for 50,000 galaxies out to z = 1.4 with DEIMOS spectrograph on Keck II

DEIMOS

Select Early-type Galaxies

We want [O III] emission from an AGN, not from star formation, so we select only early-type galaxies

- Early-type galaxies based on color cut of Willmer et al. 2006
- Spectra where both [O III] and H β are covered; this limits the redshift range to 0.34 < z < 0.82

Result: 1881 early-type galaxies at 0.34 < z < 0.82

Select Early-type Galaxies Hosting AGN

• Significant [O III] detection: at least 3σ

 λ5007/Hβ > 3 to distinguish Seyferts from other emissionline galaxies (Kauffmann 2003; Yan et al. 2006)

Result: 107 early-type galaxies hosting AGN at 0.34 < z < 0.82

Offset and Dual AGN Found by a Discrepancy between Absorption and Emission Redshifts

Mask out emission lines and fit an early-type galaxy template spectrum → measure the absorption redshift

Fit Gaussian to a window around the peak of the [O III] emission line

→ measure the emission redshift

Redshift Discrepancies

Inconsistent absorption and emission redshifts show the [O III] emission component (AGN) is moving with respect to the absorption component (host galaxy)

Convert redshift difference to a velocity separation

 $\Delta z \rightarrow \Delta v$

Found 37 Dual or Offset AGN

Eliminate objects with <3σ velocity difference Leaves 2 dual AGN and 35 offset AGN

2 Dual AGN

35 Offset AGN

What Causes AGN Velocity Offsets?

Zamanov et al. (2002) measure [O III] λ 5007 velocity offsets for ~200 AGN at z < 0.8

Factor of 3 more blueshifts than redshifts in $100 \text{ km/s} < |\Delta v| < 200 \text{ km/s}$

Blue outliers but no red outliers

Offsets caused by:

• Outflows in inner NLR of AGN (Zamanov et al. 2002)

• Strong, decelerating wind in inner NLR of AGN (Komossa et al. 2008)

Our Distribution of Offset AGN

~Same number of blueshifts as redshifts Blueshifts and redshifts have similar Δv range Physical explanation for offsets in our sample is likely different

Comerford et al. 2008

Zamanov et al. 2002

Outflows Cannot Explain Our Offsets

Outflows are believed to cause a strong correlation of increasing [O III] line width with [O III] blueshift, as seen in Komossa's sample but not ours

High-ionization outflows would shift [O III] emission lines but not low-ionization lines such as [O II] and H β , as seen in Komossa's sample but not ours

Galaxies Hosting Dual SMBHs

Most plausible explanation for offset [O III] lines in our sample: AGN moving within the host galaxy

Our sample consists of merger remnant galaxies hosting dual SMBHs, where one or both are powering AGN

Dual AGN:

Offset AGN:

Komossa et al. 2003

Half of AGN Hosts Are Merger Remnants

After adding an interpolated number of low velocity separation objects, we expect there to be 49-59 offset or dual AGN in our sample

Of the 107 early-type galaxies hosting AGN, roughly half are moving within the host galaxy due to a recent merger

We Find a Strong Link between AGN Activity and Galaxy Mergers

That half of early-type galaxies hosting AGN are also merger remnants signals a strong connection between AGN and mergers

Mergers between late-type galaxies can trigger nuclear gas inflows that power AGN -- may also be true for early-type galaxies

Springel et al. 2005

Galaxy Merger Rate

Number of dual and offset AGN we find suggests a lower limit that > 2% of early-type galaxies 0.34 < z < 0.82 are undergoing mergers

We find luminous fraction $f_{lum} = 2/37 = 5\%$ of SMBHs are fueling AGN

Convert our 49 – 59 expected dual or offset AGN to a merger rate of

5.4 - 6.6 mergers/Gyr (100 Myr / $t_{combine}$) (5% / f_{lum})

for early-type galaxies 0.34 < z < 0.82

Conclusions

- We find 2 dual AGN and 35 offset AGN in DEEP2 early-type galaxies
- Half of early-type galaxies hosting AGN are also merger remnants, signaling a strong link between AGN activity and galaxy mergers
- Merger rate ~6 mergers/Gyr for early-type galaxies 0.34 < z < 0.82
- A powerful new way of identifying galaxy mergers

