Observable Signatures of Ejected Black Holes

Laura Blecha Harvard Center for Astrophysics

> CSIRO Conference June 18, 2008

How Are SMBHs Ejected?

- Dynamical kick (3-body SMBH interaction)
 - Requires t_{merge,BH} > t_{merge,galaxy} ("dry" mergers?)
 - Ejection of lightest BH less common than merger of two BHs (Hoffman & Loeb 2007)
 (Wiseman 1992)
- Gravitational-wave (GW)
 recoil kick
 - Results from asymmetrical GW emission during BH merger
 - Relevant mechanism for wider range of systems

 $\begin{array}{c} \mathbf{v}_{2} \\ \mathbf{v}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}$

GW Recoil Kick Speeds

- Kicks up to ~4000 km/s are possible (Campanelli et al. 2007)
- Kick velocity PDF: (Schnittman & Buonanno 2007)
 - $-a_1 = a_2 = 0.9$
 - Random spin orientations

• Kicks could be lower if spins aligned (Bogdanović et al. 2007)

GW Recoil Kick Speeds

- Kicks up to ~4000 km/s are possible (Campanelli et al. 2007)
- Kick velocity PDF: (Schnittman & 2000 Buonanno 2007)
 - $-a_1 = a_2 = 0.9$
 - Random spin orientations

• Kicks could be lower if spins aligned (Bogdanović et al. 2007)

- SMBH and galaxy growth tightly linked
 => feedback processes
- Feedback will change entirely if BH is in motion
- Questions:

- SMBH and galaxy growth tightly linked
 => feedback processes
- Feedback will change entirely if BH is in motion
- Questions:

– How does GW recoil affect SMBH growth, feedback, and SMBH/galaxy coevolution?

- SMBH and galaxy growth tightly linked
 => feedback processes
- Feedback will change entirely if BH is in motion
- Questions:
 - How does GW recoil affect SMBH growth, feedback, and SMBH/galaxy coevolution?
 - What are the observable signatures of recoil?

- SMBH and galaxy growth tightly linked
 => feedback processes
- Feedback will change entirely if BH is in motion
- Questions:
 - How does GW recoil affect SMBH growth, feedback, and SMBH/galaxy coevolution?
 - What are the observable signatures of recoil?
 - Which types of recoiling systems are most likely to be observed?

Observable Signatures

- Need EM counterpart
- Recoiling quasars:
 - "Off-center" quasars $(r_{ej} \sim G M / v_{kick}^{2})$
 - "Disk-crossing" quasars
 - Observable via spatial or kinematic offsets

Observable Signatures

- Need EM counterpart
- Recoiling quasars:
 - "Off-center" quasars ($r_{ej} \sim G M / v_{kick}^{2}$)
 - "Disk-crossing" quasars
 - Observable via spatial or kinematic offsets
- Recoil flares (Lippai et al 2008, Shields & Bonning 2008)

(Shields & Bonning 2008)

Observable Signatures

- Need EM counterpart
- Recoiling quasars:
 - "Off-center" quasars ($r_{ej} \sim G M / v_{kick}^{2}$)
 - "Disk-crossing" quasars
 - Observable via spatial or kinematic offsets
- Recoil flares (Lippai et al 2008, Shields & Bonning 2008)
- Scatter in $M_{_{BH}}$ - σ relation

(Ferrarese & Ford 2005)

Observational Constraints

- "Empty" galaxies generally not seen locally
- Search for kinematic offsets in quasar spectra
 null result (Bonning et al. 2007)
- SDSS quasar with 2650 km/s offset between BLR and NLR
 => GW recoil candidate (Komossa et al. 2008)

GW Recoil Kick Speeds

- Kicks up to ~4000 km/s are possible (Campanelli et al. 2007)
- Kick velocity PDF: (Schnittman & Buonanno 2007)
 - $-a_1 = a_2 = 0.9$
 - Random spin orientations

• Kicks could be lower if spins aligned (Bogdanović et al. 2007)

A model for recoiling SMBHs

- Integrate trajectory of recoiling BH
 - Smooth potential (stellar bulge + gas disk)
 - Stellar and gaseous dynamical friction
- Calculate accretion rate using hybrid model (α-disk + Bondi)
- Free parameters: recoil kick speed and inclination
- Fiducial Model:

$$- M_{BH} \sim 10^8 M_{\odot}$$

 $- M_{gas} = 0.5 M_{*}$

Fiducial Model v_{kick} = 440 km/s

Fiducial Model v_{kick} = 440 km/s

Fiducial Model v_{kick} = 740 km/s

Fiducial Model v_{kick} = 740 km/s

Fiducial Model v_{kick} = 740 km/s

 Recoiling AGN have much larger effective emitting region than stationary AGN => affects feedback processes

- Recoiling AGN have much larger effective emitting region than stationary AGN => affects feedback processes
- Mass accreted by recoiling BHs is ~10% M_{BH} for all v_{kick}
 implies that recoiling BHs can self-regulate growth

- Recoiling AGN have much larger effective emitting region than stationary AGN => affects feedback processes
- Mass accreted by recoiling BHs is ~10% M_{BH} for all v_{kick}
 implies that recoiling BHs can self-regulate growth
- "Disk crossings" contribute little to recoiling quasar phases, but may produce additional *"recoil flares"*

- Recoiling AGN have much larger effective emitting region than stationary AGN => affects feedback processes
- Mass accreted by recoiling BHs is ~10% M_{BH} for all v_{kick}
 => implies that recoiling BHs can self-regulate growth
- "Disk crossings" contribute little to recoiling quasar phases, but may produce additional *"recoil flares"*
- Largest kicks correspond to shortest duty cycles =>
 observing GW recoil events may be challenging

- Recoiling AGN have much larger effective emitting region than stationary AGN => affects feedback processes
- Mass accreted by recoiling BHs is ~10% M_{BH} for all v_{kick}
 => implies that recoiling BHs can self-regulate growth
- "Disk crossings" contribute little to recoiling quasar phases, but may produce additional *"recoil flares"*
- Largest kicks correspond to shortest duty cycles =>
 observing GW recoil events may be challenging
- Observational challenges + self-regulated growth => cannot exclude significant population of moving BHs