

Black Hole Growth and Quasars

Stephen Fine, Scott Croom (University of Sydney IoA) Philip Hopkins, Lars Hernquist (Harvard CFA)

Overview

- Lifecycle of quasars
- Simulations of galaxy mergers
 - Quasar light curves
 - Resulting models of the quasar and active black hole (BH) populations
- Ways to test these models
 - Measuring the BH mass in quasars
 - Measuring the BH mass in 100,000 quasars
- Results
 - How do the models do?
 - Other results

Lifecycle of a quasar

Luminosity history of a quasar

• Simulated quasar light curves give $\partial t/\partial L$ the time spent by a quasar at a given luminosity.

• This is a function not only of L but also the peak luminosity a quasar will attain in its lifetime.

• Convolving this model for quasar lifetimes with a 'birth' rate function gives the luminosity function.

Springel, Di Matteo & Hernquist (2005)

Broad lines and Quasars

Mass estimation with the virial method

 Broad-line emission region is assumed to be virialised and so the width of a line gives V_{BLR}.

$$M_{\rm BH} pprox rac{rv}{G}^2$$

• The radius-luminosity relation derived from reverberation mapping campaigns gives r_{BLR} .

Virial problems

- Broad-line region may not be virialised
- Radius-luminosity relation poorly defined (in particular for bright quasars)
- We want the dispersion in BH mass at a given luminosity so:
 - We bin our sample of QSOs by *L* and *z* and calculate the dispersion in Log(line width).
 - Then for a given bin:

Dispersion in Log(BH mass) = 2 x Dispersion in log(line widths)

Survey	No. of objects	Mag. range
SDSS	77,000	~19>M _i >~15
2QZ	23,000	20.85>M _{bj} >18.25
2SLAQ	8,000	21.85>M _g >18.0

QSO spectrum

Croom et al. (2002)

Dispersion Results

Comparison with Models

Dispersion Results

Geometry of the Broad-Line Region

Geometry of the BLR

Disk?

Polar wind?

Line width $\propto \sin(\theta)$

Line width $\propto \cos(\theta)$

Geometry of the BLR

Line width $\propto a \cdot \sin(\theta) + (1-a)$

Line width $\propto a \cos(\theta) + (1-a)$

Summary

- There is very little variation in broad-line width between QSOs.
- There is a significant decreases in this variation towards larger luminosities.
- We find an almost identical trend in the dispersion of our line widths as predicted for the dispersion in BH masses.
- The low level of dispersion in line width at high luminosities implies:
 - 1) There is an important aspect of the virial method for BH mass estimation we are yet to understand.
 - 2) The velocity field of the broad-line region in high luminosity quasars is largely spherically symmetric.

Same with CIV?

Same with CIV?

Measuring the MgII line

Measuring the MgII line

Same with CIV?

The life and death of a quasar

- Lifecycle of QSOs
 - galaxy mergers \rightarrow starburst

 \rightarrow quasar activity \rightarrow BH growth

 \rightarrow feedback \rightarrow spheroid formation

- BH spheroid correlations (e.g. Tremaine et al. 2002)
- Energetics (e.g. Silk & Rees 1998)
- Simulations of galaxy mergers (e.g. Hopkins et al. 2006)

The radius-luminosity relation

Kaspi et al. (2005)