Gas and Star Formation in the Circinus Galaxy

Bi-Qing For PhD student University of Texas, Austin, USA Baerbel Koribalski (CASS) & Tom Jarrett (SSC)

Outline

- The Circinus galaxy
 Why the need for Spitzer?
 Galactic foreground correction
 SED & Av
 Masses
 - Star formation
 - Gas and star formation regions

- Nearby Sb-Sd type spiral galaxy, 4.2 Mpc, ~17' Holmberg diameter of stellar disk (Freeman et al. 1977)
- It lies near to the Galactic plane ($b = -4^{\circ}$)

2MASS JHK composite image (~24' x 24')

(Jarrett et al. 2003)

- Seyfert nucleus
- Circum-nuclear ring (starburst activity)

- Enormous H I envelope (80', ~100 kpc), $M_{HI} = 8 \times 10^9 M_{sun}$
- Warped disk with strong but irregular spiral pattern and inner bar

Large-scale HI distribution and mean velocity field of the Circinus galaxy taken with various arrays of the ATCA (Jones et al. 1999). (80' x 60')

Why Spitzer?

- Optical: obscured by foreground dust
- Limited to nuclear and central regions
 - HST, Chandra, ISO
- IRAS and ISO (lack resolution + sensitivity)
- Spitzer \rightarrow high resolution + sensitivity MIR imaging
 - IRAC 3.6, 4.5 μm (stellar light)
 - IRAC 5.8, 8.0 μ m (PAHs \rightarrow spiral structure)
 - MIPS 24 µm (warm dust)
 - MIPS 70 µm (cold dust)

~0.3 – 0.5 MJy/sr, ~2", 6" and 18" resolution 50'x50'

Challenges....

- Removal of foreground stars (pipeline of WISE)
- Removal of Galactic foreground
 - IRAC 5.8 & 8.0 μm ; MIPS 24 μm
 - Correlation analysis (MIR dust emission with 21 cm HI emission)

ATCA (interferometer) + Parkes (single dish)

Images credit: www.atnf.csiro.au

Jones et al. (1999)

Galactic All Sky Survey (GASS) McClure-Griffiths et al. (2009)

For, Koribalski & Jarrett, in prep

Correlation

•
$$I_{spitzer} = a \times I_{HI} \rightarrow a = I_{spitzer} / I_{HI}$$

Final image
$$I_{spitzer} = I_{spitzer} - a \times I_{HI}$$

- Residual IR gradient: "first frame effect"
 - Fitting 1st order polynomial to the background

Employed image $I_{spitzer}$ fitted with g(x,y)

Significant "first frame effect" : 5.8 µm

For, Koribalski & Jarrett, in prep

For, Koribalski & Jarrett, in prep

SED & Av

- Common method: all-sky extinction map (Schlegel et al. 1998)
- Uncalibrated for $|\mathbf{b}| < 5^{\circ}$
- Av=4.6 (Schlegel et al. 1998)

Masses

- Stellar: 3.6 μ m & 4.5 μ m: 9 x 10¹⁰ Msun
- Gas:
 - HI (ATCA, single-pointing): 6.6 x 10⁹ Msun
 - Curran et al. (2008): 6 x10⁹ Msun
 - − CO_{1→2} (Curran et al. 2008) → H₂: 1.1 x 10⁹ Msun
 - Curran et al. (2008): 2 x 10⁹ Msun

Star Formation Rate Surface Density

Global Kennicutt-Schmidt's Law

Kennicutt 1998; For, Koribalski & Jarrett, in prep

Global Star Formation Rate

Table 6. Derived global star formation rates for the Circinus galaxy.

$\frac{\text{SFR}}{(M_{\odot}\text{yr}^{-1})}$	Wavelength Required	Calibration Method	Reference
- U			
8.6	$24 \mu m$	$L_{24\mu m} - H_{ee}$	Wu et al. (2005)
6.9	8µm	$L_{S\mu m} - H_{\alpha}$	Wu et al. (2005)
8.3	$24 \mu m$	$L_{24\mu\mathrm{m}}$ -1.4 GHz	Wu et al. (2005)
7.8	8µm	$L_{8\mu m} - 1.4 \text{ GHz}$	Wu et al. (2005)
2.8	24.µm	$L_{24\mu m}$	Calzetti et al. (2007)
4.3	24 µm	$L_{24\mu m}$	Rieke et al. (2009)
< 1	24µm, 70µm, 160µm	LFIR	Kennicutt (1998b)
4.6	$24 \mu m$	L 24 µ m	Alonso-Herrero et al. (2006)

For, Koribalski & Jarrett, in prep

~3 – 8 Msun yr⁻¹

Gas and Star Formation Regions

Gas and Star Formation Regions

 $N_{\rm HI}$ (cm⁻²) Green: 1.23 x 10²¹ Blue: 2.45 x 10²¹ Red: 3.44 x 10²¹ Black: CO_{1→2}

Spitzer 8.0 μm (convolved 15") ATCA (HI convolved 15")

Spitzer 24 µm

ATCA (HI convolved 15")

CO1→2 (convolved 50")

 $N_{\rm HI} \,({\rm cm}^{-2})$ Green: 1.23 x 10²¹ Blue: 2.45 x 10²¹ Red: 3.44 x 10²¹ Black: CO_{1 \rightarrow 2}

Conclusions

- Spitzer reveals the Circinus spiral arms for the first time
- Av= 2.1
- Stellar: 9 x 10^{10} Msun
- $Mgas = 8 \ge 10^9 Msun$
- Star formation rate: $\sim 3 8$ Msun yr⁻¹
- Star formation caused by the density wave

Thank you!

BQF thanks CASS for the financial support of this work.

Surface brightness profiles

For, Koribalski & Jarrett, in prep

- Ionized gas associated with the outflow
 - Molecular outflow (Curran et al. 1999)
- Minor axes radio lobes (Elmouttie et al. 1995)

The ionisation cone in Circinus (Marconi et al. 1994) scaled and superimposed upon the molecular outflow of Curran et al. (1999).