The Australia Telescope National Facility Wideband Correlator.
 2 Dec 1999
 Preliminary.

Contents.
1.0 Description.
2.0 Programming.
3.0 Hardware Systems.

Appendix A - Buffer Card Clock Generation Timing Analysis.
Appendix B.
Appendix C - Bill Of Materials.
Miscellaneous.

1.0 Description.

1.1 General.

The ATNF Wideband Correlator is a wide bandwidth, 2048 lag auto-correlator, using the NASA SERC correlator IC ${ }^{1}$ along with the correlator card designed for the NRAO Greenbank Telescope ${ }^{2}$. The synchronous, static design along with extensive use if field programmable gate arrays allows for lower bandwidth by either simply reducing the system clock rate or by data decimation. By the installation of a second input Data Buffer Card a crosscorrelator can be implemented. At maximum clock rate, the correlator is capable of processing up to 2.048 GHz bandwidths ${ }^{3}$.
Data flow is from the Samplers, through the Data Buffer card, to the Correlator card, to the
Accumulator card, thence to an external the Correlator Control Computer (CCC) for further processing and archiving.
Low level hardware configuration and control is with a small PC based Block Control Computer (BCC) with an onboard ATNF Event Generator. The BCC is in turn command driven by the CCC. An ATNF Distributed Clock is used to tie all timings to the Observatory time base.

Key features:

- Up to 2.048 GHz bandwidth ${ }^{3}$.
- Clock rate variable bandwidths.
- Precise, flexible control through the use of the ATNF Distributed Clock system.

1. John Canaris/ Mike Davis
2. Ray Escoffier NRAO Central Development Laboratory, Charlottesville West.Virginia USA.
3. Anticpated maximum bandwidth.

1.2 Specifications.

Description	Value	Units
Maximum Correlator Clock Rate	128	MHz.
Maximum number of Lags (auto-correlation - Max BW)	2048	Lags.

Maximum number of Lags (cross-correlation - Max BW)	$+/-1024$	Lags.
Data Buffer Memory size	4	Mbyte.
Correlator data output rate	20	MHz.
Accumulator Memory size (per bank)	4	Mbytes.
Number of Accumulator Memory banks	2	ea.
Control Timing resolution	1	$\mu \mathrm{~S}$.

1.3 Performance and Operational Constraints.

There are many factors that will limit the performance of the correlator or will require a balance between conflicting options. These include:
i. Correlator Resolution.
ii. Data output rate,
iii. Accumulator Memory size.
iv. Accumulator Width.
v. Sample Count Access.
1.3.1. Correlator Configuration and Resolution - fully populated card.

The 16 correlator ICs on each card are interconnected in such a way as to allow the combinations listed below.

	Autocorrelation		Crosscorrelation			Bandwidth	
	N Lags	Fc	N	Lags	Fc	Contribution.	Products
1	82048	2048				512 MHz .	$\mathrm{A}^{2}, \mathrm{~B}^{2}, \mathrm{C}^{2}, \mathrm{D}^{2}, \mathrm{E}^{2}, \mathrm{~F}^{2}, \mathrm{G}^{2}, \mathrm{H}^{2}$.
2	44096	4096				256 MHz .	$\mathrm{B}^{2}, \mathrm{D}^{2}, \mathrm{~F}^{2}, \mathrm{H}^{2}$.
3	44096	4096				256 MHz .	$\mathrm{A}^{2}, \mathrm{C}^{2}, \mathrm{E}^{2}, \mathrm{G}^{2}$.
4	81024	1024	4	± 1024	1024	256 MHz .	$\begin{aligned} & \mathrm{A}^{2}, \mathrm{~B}^{2}, \mathrm{C}^{2}, \mathrm{D}^{2}, \mathrm{E}^{2}, \mathrm{~F}^{2}, \mathrm{G}^{2}, \mathrm{H}^{2} \\ & \mathrm{~A} \bullet \mathrm{~B}, \mathrm{C} \bullet \mathrm{D}, \mathrm{E} \bullet \mathrm{~F}, \mathrm{G} \bullet \mathrm{H} . \end{aligned}$
5			4	± 2048	2048	256 MHz .	$A \bullet B, C \bullet D, E \bullet F, G \bullet H$.

Bandwidth Contribution is the contribution the combination makes to the entire setup. For example, with a card configured for 8 X 2048 Auto, four cards are required to form a 2.048 GHz correlator.

The five possible configurations are shown in the following diagrams. In all cases the input signals designated $\mathrm{A}-\mathrm{H}$ can be selected from any of the 8 signals fed to the accumulator/correlator card.

AUTOCORRELATION 4 IFs X 4096 FREQ.CH \#1

AUTOCORRELATION 8 IFs X 1024 FREQ.CH \& CROSSCORRELATION 4 IFs X 1024 FREQ.CH

1.3.2. Correlator Configuration and Resolution - half populated card.

If each correlator card is only half populated, some performance gains in the data handling area can be made. The disadantages of a half populated card are:

- loss of the higher resolution option of 4096 frequency channels in autocorrelation. All the other configurations should be possible.
- cost and complexity of double the number of correlator cards. This includes additional EURO card bins, power supplies, rack room and cooling.
On the other hand, the advantages are:
- reduced thermal density,
- halves the total dump times of data from correlator IC to the accumulator,
- doubles the accumulator memory available per correlator IC.

There is no change in the performance of the data transfer time from the correlator to the CCC.

1.3.3 Data output rate.

The output data rate of the correlator cards is limited by 3 things. These are: the maximum rate from which data can be shifted from the correlator ICs, the shared or common data path between the correlator ICs and the accumulator, and the shared data path between the Accumulator and the external Correlator Control Computer.
1.3.3.1. The maximum rate that data can be shifted out from the correlator ICs is 20 MHz , or one (32 bit) word every 50 nS . Thus the Maximum Output Data rate is:

Maximum Output Data rate $=$ Number of Lags X 50nS.
For example, to recover all 1025 (1024 lags + 1 sample counter) would require $50 \times 1025 \mathrm{nS}$, ie $51.25 \mu \mathrm{~S}$, and for say 128 lags it would require 128 X 50 nS , ie $6.4 \mu \mathrm{~S}$. This constraint will limit the minimum continuous integration time.
1.3.3.2. The output data path between the Correlator ICs and the Accumulator, for a given Correlator card, is shared by up to 16 correlator ICs. As data transfers from a single Correlator IC occupies 100% of this bus' bandwidth, the Total Data Transfer Time will be:

Total Data Transfer Time = Correlator ICs in use X No. Lags X Data Rate.
For example, to recover 128 lags from any one correlator IC at $50 \mathrm{nS} /$ word will take $6.4 \mu \mathrm{~S}$. If there are 16 correlator ICs in use on a particular Correlator Card, then the Total Transfer Time will be: 16 X 128 X 50 nS , ie 102.4μ S. This constraint will limit the minimum continuous integration time. For narrower bandwidths, fewer Correlator ICs will need to be used on each card, thus reducing the minimum continuous integration time.
1.3.3.3. The shared data path between the Accumulator and the external Correlator Control Computer (CCC) carries all the data from the correlators into the CCC. It's maximum data rate is around 2 (32 bit) words $/ \mu \mathrm{S}$. Assuming there are no delays in the CCC, then the time to download the data from any accumulator will be:

Download Time $=($ Number of Lags $/ 2) \mu S$.
This constraint will limit the minimum continuous integration period.

1.3.4 Accumulator Memory size.

The number of lags and bins that can be processed by the Accumulator is limited by the Accumulator's Memory size. The Memory Size will be:

Lags per Bin X No. of Bins X Correlator ICs in use $=$ Memory Size.
For example, for 128 lags per bin, and 1024 Bins using 16 correlator ICs, would require:
128 X 1024 X $16=2$ MWord $=8$ MBytes.
As the Accumulator Memory size may vary depending upon the memory device availability, consult the values for the card that will be used.

1.3.5 Accumulator Width.

The largest integer that the Correlator IC will handle is 32 bits. At lag zero, auto-correlation, an overflow will occur after $2 * * 31$ correlations. Therefore the maximum time between dumps from the Correlator ICs to the external Accumulator or the CCC will be:

Max Dump Time $=2 * * 31 /$ Clock Rate.
For example, for a clock rate of 128 MHz the Maximum Dump Time will be:
$2 * * 31 / 128 X 10^{* *} 6=16.77 \mathrm{Sec}$.
If longer integration times are required either scale the data from the Correlator ICs before the Accumulator, or dump the data to the CCC and accumulate the results there.

1.3.6. Sample Count Access.

This value will not be available if more than half the Accumulator memory is allocated or less than 1025 values are transferred from the Correlator ICs.

2.0 Programming.

2.1. Memory model.

2.1.1. CCC Bus.

The accumulator is accessable from the CCC on a special purpose bus. This bus is a 32 bits wide combined address and data bus. The interface card residing in the CCC handles the entire transfer with only minimal CCC program intervention. Only word (32 bit) transfers are done.
Each Correlator Block has eight slots, and each slot is designed to accomodate up to 64Mwords of memory and each has a unique identity within the Correlator Block. Thus each card is mapped to a sequential $64 \mathrm{M}\left(2^{26}\right)$ space within each Correlator Block and each Correlator Block occupies a $512 \mathrm{M}\left(2^{29}\right)$ space on the special purpose bus. This leaves the top 5 bits of the address space to define the base address of each Correlator Block which is set by DIP switches on the backplane. Thus there can be up to 32 Correlator Blocks!
2.2. Fixed System.
2.3. FPGA firmware.
2.3.1. General.

With the exception of the 2 FGPA devices used to interface to the BCC on both the Data Buffer Card and the Accumulator card, all other FPGA must be programmed by the BCC before either card can be used. In the case of the Data Buffer card there are a total of 9 devices and for the Accumulator there are 2 devices.

2.3.2. Data Buffer Card.

2.3.2.1. General.

There are 9 FPGA devices made up of 4 pairs and one single. Each set of a pair can be programmed identically (the usual case), or if needs be, can be programmed individually. This means that there must be 5 programming operations performed before the Data Buffer card is fully configured.
To speed the programming operation, the interface between the BCC and the FPGA performs the parallel to serial conversion of the configuration data as well as the clocking of the data into the relevant FPGA.
Data is normally stored in the CCC in an Intel ${ }^{\circledR}$ Hex Format file and when required, is downloaded to the BCC for transfer to the appropriate FPGA. The download operation would require the BCC to first reset the target FPGA, transfer the data to it and on completion check that the 'Done' bit has gone Hi.
2.3.2.2. Memory Map.

2.3.2.3. Control and Status Register.

2.3.2.4. Xilinx Programming Select Register.

This register allows the selection of which Xilinx FPGA to reset and/or program. By setting the appropriate bits, the corresponding Xilinx FPGA will be configured simultaneously. Simultaneous programming is only feasable when the Xilinx FPGA have identical configuration data. To configure a Xilinx FPGA, first set the appropriate bit in this register (as well as the Global Enable bit), then perform a reset by writing to the Xilinx Reset Register, then write the configuration data as 16 bit words into the Xilinx Programming Data Register.

XILINX PROGRAM SELECT REGISTER (Offset 0x1)

Bit Type Description
0001 R/W Input Formatter (bit 0). When set Hi, the control paths to the Xilinx FPGA that handles the input formatting of bit 0 of the data stream from the Samplers into the buffer memory is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.

R/W Output Formatter (bit 0). When set Hi, the control paths to the Xilinx FPGA that handles the Output formatting of bit 0 of the data stream from the buffer memory is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.
0008 R/W Output Formatter (bit 1). When set Hi, the control paths to the Xilinx FPGA that handles the Output formatting of bit 1 of the data stream from the buffer memory is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.
0010 R/W Output Align (bit 0). When set Hi, the control paths to the Xilinx FPGA that handles the Output aligning of bit 0 of the data stream from the buffer memory is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.
0020 R/W Output Align (bit 1). When set Hi, the control paths to the Xilinx FPGA that handles the Output aligning of bit 1 of the data stream from the buffer memory is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.
0040 R/W Output Multiplexer (bit 0). When set Hi, the control paths to the Xilinx FPGA that handles the multiplexing of bit 0 of the data stream from the buffer memory to the
output cables is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.
0080 R/W Output Multiplexer (bit 1). When set Hi, the control paths to the Xilinx FPGA that handles the multiplexing of bit 1 of the data stream from the buffer memory to the output cables is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.
0100 R/W Memory Controller. When set Hi, the control paths to the Xilinx FPGA that handles the buffer memory controller is enabled. This bit must be set Hi to reset and/or program this Xilinx FPGA. The Global Enable bit must also be set Hi.

2.3.2.5. Xilinx Reset Register.

This register allows one or any of the programmable Xilinx FPGAs to be reset. The appropriate bit must also be set in the Xilinx Programming Select Register.

XILINX RESET REGISTER (Offset 0x2)

2.3.2.6. Xilinx Programming Data Register.

2.3.3. Accumulator Card.

2.3.3.1. General.

There are 3 FPGA devices on this board; one for the BCC \& Event Generator interface, and the other two form each bank of the accumulator. Both the FPGA that form the accumulator are programmed identically, with individual monitoring of the 'Done' line for diagnostic reasons. This means that there must be a programming operations performed before the Accumulator card is operational.
To speed the programming operation, the interface between the BCC and the FPGA performs the parallel to serial conversion of the configuration data as well as the clocking of the data into the relevant FPGA.
Data is normally stored in the CCC in an Intel ${ }^{\circledR}$ Hex Format file and when required, is downloaded to the BCC for transfer to the appropriate FPGA. The download operation would require the BCC to first reset the target FPGA, transfer the data to it and on completion check that the 'Done' bit has gone Hi .

2.3.3.2. Memory Map

There are 2 sets of registers mapped on the accumulator card; one set is contained in the BCC interface FPGA and the other set contained in the accumulator FPGA. The latter are more nebulus and their access depends upon the mode the accumulators are operating in.

2.3.3.3. Control and Status Register.

Bit Type Description
0001 R/W CCC/BCC Access. Selects which control computer has access to either the correlator ICs or to the accumulator memory. When set Lo, the Correlator Control Computer (CCC) has access and when set Hi, the Block Control Computer (BCC) has access. Which device is accessed is controlled by the Xcell/Memory Access bit in this register.
0002 R/W Xcell/Memory Access. This bit selects which device is accessed by the external computers. When set Lo, the XCells are access, and when set Hi, the Accumulator memory is accessed.
00c0 R/W Installed XCells. These 2 bits define how many correlator ICs are installed on each correlator card. This is:

$$
\begin{aligned}
& 00-2 \\
& 01-4 \\
& 10-8 \\
& 11-16
\end{aligned}
$$

$0 c 00$ R/W Ext Clock Select. Selects the external clock source for the Correlator from one of the 4 available sources. The Int/Ext Clock Select bit must be set for external Clock.
1000 R/W Int/Ext Clock Select. Selects the clock source for the Correlator from an external source or from an internal source. The latter choice is principly for testing.
2000 R/W Xilinx Programme Enable. Enables (or unlocks) access to the control bits that allow configuration of the accumulator Xilinx IC. This bit must be set Hi before any programming operation will work. For safety, set this bit Lo after configuration complete.
4000 R/W Serial Number Enable. When set Hi the serial number PROM is enabled.
8000 R Serial Number bit. This is the current bit coming from the Serial Number PROM.
W Serial Number Clock. Writing a Hi to this bit advances to the next data bit in the Serial Number PROM. A typical read of the Serial Number PROM would involve first enabling the Serial Number Enable bit (the Serial Number PROM is automatically reset), then repeatedly reading of the Serial Number bit, followed by a single write of a Hi to the Serial Number Clock bit, until the appropriate number of bits has been read.

2.3.3.4. Crossbar Switch Control Register.

The 16 X 16 crossbar switch on the input signals to the correlator card can be set to switch through any input signal to any correlator IC. Bit OR the output line number into the least significant nibble and the desired input line number to the second least significant nubble, and write the result to this register. Note that the Crossbar switch is configured after each write to this register.

CROSSBAR SWITCH CONTROL REGISTER (Offset 0x1)

Bit Type Description.
$000 f$ R/W Output Line Number. Selects which one of 16 output lines of the Crossbar switch to programme.
00f0 R/W Input Line Select. Switches one of the 16 input lines through to the designated output line.
8000 W Reset Crossbar Switch. Writing a Hi to this bit will reset the Crossbar switch. This will override any values set in the bottom 8 bits of this register. When reset all the outputs of the crossbar switch are switched to input line 0 .

Table of GBT correlator card input signals and corresponding crossbar switch outputs. The GBT signal names are those used on the circuit schematics of that card. It may be also necessary to program the GBT Correlator Card Control Register to select the appropriate GBT Signal.

GBT Signal	CBS output	Comment
+PDATA0	14	7 ' A ' input
-PDATA0	15	
+DDATA0	12	7 'B' input
-DDATA0	13	
+PDATA1	10	7 ' C ' input
-PDATA1	11	
+DDATA1	8	7 'D' input
-DDATA1	9	
+PDATA2	6	7 ' $\mathrm{\prime}$ ' input
-PDATA2	7	
+DDATA2	4	7 'F' input
-DDATA2	5	
+PDATA3	2	7 'G' input
-PDATA3	3	
+DDATA3	0	7 'H' input
-DDATA3	1	」

Table of crossbar switch inputs and corresponding signal sources. The source signal numbering starts with 0 from the top most row of pins on the lower EURO connector. In some documentation ' + ' may be referred to as bit 0 , and '-‘ as bit 1 .

Source signal	CBS input	Comment
+0	15	
-0	10	
+1	14	
-1	9	
+2	13	
-2	8	
+3	12	
-3	7	
+4	11	
-4	6	
+5	5	
-5	2	
+6	4	
-6	1	
+7	3	
-7	0	

As an example, if input signal ' 0 ' (both bits) was required to be fed to PDATA0 (both bits), then the values 0x00fd and 0x00af should be written into the Crossbar Switch Control Register.
2.3.3.5. FPGA Programming Control and Status Register.

Bit Type Description
0001 R Reset Underway. When Hi the reset operation is currently underway. Performing any other programming operation on the Xilinx IC during this time may not work.
W Reset ACC Xilinx. Writing a Hi to this bit pulses the reset line in both of the Accumulator Xilinx ICs, thus forcing a reset.
0002 R Programming Underway. When Hi, programming data is being written out the the Accumulator Xilinx ICs. Writing any more data during this time may cause the current data to be corrupted, thus causing the Xilinx configuration process to fail. When configuring a Xilinx IC, do a check on this bit before writing data to the Xilinx programming Data Register.

2.3.3.6. FPGA Programming Data Register.

XILINX PROGRAMMING DATA REGISTER (Offset 0x3)

Bit Type Description
0001 R ACC Xilinx \#0 Done.When Hi Accumulator Xilinx IC \#0 has successfully been configured.
0002 R ACC Xilinx \#1 Done.When Hi Accumulator Xilinx IC \#1 has successfully been configured.
ffff W Xilinx Programming Data. Each 16 bits of the Xilinx configuration data is loaded into this register. Data is loaded directly as read form an Intel hex format file as a 16 bit integer, for example the first 4 bytes of ASCII data from such a file may be:

FF 040698 F9 DA FF FB
thus the 16 bit word $0 x$ xF04 will be written on the first pass, 0×0698 will be written on the second pass, etc.

2.3.3.7. GBT Correlator Card Control Register.

The Control register on the NRAO GBT can be programmed by writing to this register. As the register is serially loaded, there may be several microseconds between when data is written and when the bits actually take effect.

GBT CORRELATOR CARD CONTROL REGISTER (Offset 0x4)

Bit Type Description
0001 W PMUX0. Prompt Input Multiplexer Control for Correlator ICs 2C, 4C, 6C and 8C. When clear the input data that feeds the 'prompt' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0002 W PMUX1. Prompt Input Multiplexer Control for Correlator ICs 2D, 4D, 6D and 8D. When clear the input data that feeds the 'prompt' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0004 W PMUX2. Prompt Input Multiplexer Control for Correlator ICs 2E, 4E, 6E and 8E. When clear the input data that feeds the 'prompt' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0008 W PMUX3. Prompt Input Multiplexer Control for Correlator ICs 2F, 4F, 6F and 8F. When clear the input data that feeds the 'prompt' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.

01	W	DMUX0. Delayed Input Multiplexer Control for Correlator ICs 2C, 4C, 6C and 8C. When clear the input data that feeds the 'delayed' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0020	W	DMUX1. Delayed Input Multiplexer Control for Correlator ICs 2D, 4D, 6D and 8D. When clear the input data that feeds the 'delayed' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0040	W	DMUX2. Delayed Input Multiplexer Control for Correlator ICs 2E, 4E, 6E and 8E. When clear the input data that feeds the 'delayed' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0080	W	DMUX3. Delayed Input Multiplexer Control for Correlator ICs 2F, 4F, 6F and 8F. When clear the input data that feeds the 'delayed' side of the correlator chain enters the correlator IC via the primary inputs, and when set this input data enters the correlator IC via the auxillary inputs.
0100	W	TEST0. Test Control bit for Correlator ICs 2C, 4C, 6C, 8D, 2D, 4D, 6D and 8D. When clear the correlator ICs operate normally, and when set these chips are put into test mode.
0200	W	TEST1. Test Control bit for Correlator ICs 2E, 4E, 6E, 8F, 2F, 4F, 6F and 8F. When clear the correlator ICs operate normally, and when set these chips are put into test mode.
0400	W	DVS0. Double Mode Control bit for Correlator ICs 2C, 4C, 6C, 8D, 2D, 4D, 6D and 8 D . When clear the correlator ICs operate at $1: 1$ speed, and when set these chips are put into double mode where the clock speed is twice the data rate.
0800	W	DVS1. Double Mode Control bit for Correlator ICs 2E, 4E, 6E, 8F, 2F, 4F, 6F and 8 F . When clear the correlator ICs operate at $1: 1$ speed, and when set these chips are put into double mode where the data rate is half the clock speed.
1000	W	M0. When cleared the output buffers on the correlated data bus can be enabled when the card is accessed, and when set the correlated data bus cannot be enabled.
000	W	M1. This bit goes to the Correlator IC select decode PALs, and currently

2.3.3.8. Correlator Event Select Register.

This register allows the selection of which event line will be used to drive each of the 4 control lines that drive the Correlator ICs.

CORRELATOR EVENT SELECT REGISTER (Offset 0x5)

Bit $000 f$	Type R/W	Description The binary value of the event line to use to drive the BLANK signal of the Correlator IC array. Note, this signal is OR'd with the auto blank signal from the Data
000f	R/W	Buffer Card. The binary value of the event line to use to drive the SHIFT ENABLE signal of the Correlator IC array.
000 f	R/W	The binary value of the event line to use to drive the INTEGRATE signal of the Correlator IC array.
$000 f$	R/W	The binary value of the event line to use to drive the ACCUMULATOR RESET signal of the Correlator IC array.

2.3.3.9. Accumulator BCC Read Address Register (LS Word).

Bit Type Description
ffff R / W If reading from the accumulator memory, this is the LS 16 bit word of the memory to access. If reading directly from the Correlator ICs, the bottom 4 bits are used to select which Correlator IC to access; all the remaining bits in this register and in the Accumulator BCC Read Address Register (MS Word) have no meaning. When reading from the accumulator memory, this register in conjunction with the Accumulator BCC Read Address Register (MS Word), autoincrements with each reading of the MS Accumulator BCC Read Data Register. Thus to transfer a block of data from memory to the BCC, write the 32 bit start address into this and the Accumulator BCC Read Address Register (MS Word), then repeatedly read the Accumulator BCC Read Data Register (LS Word) and the Accumulator BCC Read Data Register (MS Word) in that order as many times as necessary.
2.3.3.9. Accumulator BCC Read Address Register (MS Word).

Bit Type Description
ffff R/W If reading from or writing to the accumulator memory, this is the MS 16 bit word of the memory to access. If reading directly from the Correlator ICs, the contents of this register have no meaning. When reading from the accumulator memory, this register in conjunction with the Accumulator BCC Read Address Register (LS Word), autoincrements with each reading of the MS Accumulator BCC Read Data Register. Thus to transfer a block of data from memory to the BCC, write the 32 bit start address into the Accumulator BCC Read Address Register (LS Word) and this register, then repeatedly read the Accumulator BCC Read Data Register (LS Word) and the Accumulator BCC Read Data Register (MS Word) in that order as many times as necessary.
2.3.3.10. Accumulator BCC Read Data Register (LS Word).

Bit Type Description
ffff R/W This is the LS 16 bit word of the data being read from or written to memory or read directly from the Correlator ICs, depending upon the access mode set. With both types of access this register must be read or written (if applicable) first.

2.3.3.10. Accumulator BCC Read Data Register (MS Word).
 ffff R/W This is the MS 16 bit word of the data being read from or written to memory or read directly from the Correlator ICs, depending upon the access mode set. With both types of access this register must be read or written (if applicable) last.

2.3.3.11. Accumulator BCC StatusRegister.

3.0 Hardware Systems.

3.1.0 Data Buffer Card.

This card buffers the high data rate of the samplers into a form suitable for the much slower speed correlator ICs. This is done by storing the incoming data sequentially into memory, then dividing that data into segments and reading it out to the correlators. Data enters this card on a time contiguous 16 sample wide bus (32 bits in all) at 256 MHz and leaves as 32 separate, time sliced 1 sample wide bus (2 bits) at 128 MHz .
The memory block consists of 2 halves. While one half is being written to, the other half can be read from. This form allows much slower memory elements to be used, but requires more memory.

3.1.1. Data input.

Data is received from the samplers on a 16 sample wide, 32 pair balanced ECL. Data format is shown below. A clock signal, running at half the data rate is also included on an additional pair on each cable. Both the data and the clock should change state at the same instant. (The clock signal should be treated as an ordinary data line by the driving end). Transmission of the correlator clock with the data will always guarantee correct phase relationship between it and the data regardless of frequency and cable length.
The physical cable consists of two halves, each made up of 34 way (17 pair) twisted pair ribbon cable (such as Spectra Twist'N'Flat cable) with a characteristic impedance of around 100Ω. Cable \#1, carries samples 0 through to 7 on pairs 1 through to 16 respectively, and on cable \#2 samples 8 through to 15 on pairs 1 through to 16 respectively. On both cables, pair 17 carries the clock. Sample 0 is deemed to have occurred at $t=0$, sample 1 at $t=1$, etc. Each set of cables should be within several centimetres of the same length.
Transfer of the signals from the cable to the buffer card is by direct connection to DIN 41612 connector pressed into the motherboard. This connector is of the loadable pin crimp type.

Table 1. Sampler-Correlator Cable Pin assignment.
Cable \#1 Cable\#2

Wire	Signal	Signal
1	S0-D0	S8-D0
2	\sim S0-D0	\sim S8-D0
3	S0-D1	S8-D1
4	\sim S0-D1	\sim S8-D1

5 S1-D0 S9-D0

6 ~S1-D0 ~S9-D0
7 S1-D1 S9-D1
8 ~S1-D1 ~S9-D1
9 S2-D0 S10-D0
10 ~S2-D0 ~S10-D0
11 S2-D1 S10-D1
$12 \sim$ S2-D1 ~S10-D1
13 S3-D0 S11-D0
$14 \sim$ S3-D0 ~S11-D0
15 S3-D1 S11-D1
$16 \sim$ S3-D1 ~S11-D1
17 S4-D0 S12-D0
$18 \sim$ S4-D0 ~S12-D0
19 S4-D1 S12-D1
20 ~S4-D1 ~S12-D1
21 S5-D0 S13-D0
22 ~S5-D0 ~S13-D0
23 S5-D1 S13-D1
24 ~S5-D1 ~S13-D1
25 S6-D0 S14-D0
26 ~S6-D0 ~S14-D0
27 S6-D1 S14-D1
28 ~S6-D1 ~S14-D
29 S7-D0 S15-D0
30 ~S7-D0 ~S15-D0
31 S7-D1 S15-D1
$32 \sim$ S7-D1 ~S15-D1
33 Clock Clock
34 ~Clock ~Clock
35 GND GND
36 GND GND
37 GND GND
38 GND GND
39 GND GND
$40 \quad$ GND GND

SAMPLER-CORRELATOR DATA FORMAT

SAMPLER-CORRELATOR DATA-CLOCK TIMING

Name	Symbol	Min	Typ	Max	Units
Clock Period	tclkper	7.8	-	-	nS
Clock-Data delay	tclkdd	-0.25	0	0.25	nS

3.1.2. Data Output.

Data leaves the Buffer card on 32 separate data buses, each made up of 2 bits in balanced ECL. Appropriate cabling is required to take the data from the Buffer card to the correlator card. There is also 8 clock outputs available at the output connector. Depending upon the correlator system required, different cable arrangements can be easily assembled. Transfer of the signals to the cable from the buffer card is by direct connection to the DIN 41612 connector pressed into the motherboard. This connector is of the loadable pin crimp type. The availability of the 8 clock outputs, allows for a simple maximum bandwidth correlator autocorrelator which would require 4 correlator cards (4 clocks) or a maximum bandwidth crosscorrelator which would require 8 correlator cards (8 clocks).

BUFFER CARD CABLING OUTPUT FOR 4
AUTOCORRELATORS

BUFFER CARD CABLING OUTPUT FOR 8 CROSSCORRELATORS

All 32 X 2 bit data buses are aligned, so that at the data on them changes to the new data at the same instant after a change from one memory bank to another. A balanced TTL "Blank" signal, lasting 16 ?
clock periods, is issued at the changeover point to inform all boards receiving this data that a discontinuity in the data has occurred. The boards receiving the data should use this signal to blank their correlators for the appropriate period.

3.1.3. Runtime Control.

Runtime Control is done by one signal. This signal resets the memory control sequencer which in turn restarts the loading process. Once reset the memory control sequencer runs continuously accepting data from the samplers and sending data to the correlators. The Buffers must run at least one load cycle before the data to the correlators is valid.

3.1.4. Configuration.

The Buffer card can be configured for many different forms of operation. FPGAs are used extensively in the data path and sequence controller. These can be programmed from an external computer (BCC) during system configuration. A "master" FPGA is used as the interface between the external control computer and the other FPGAs.

3.2.0 Correlator Accumulator Card.

3.2.1 General.

The Correlator Accumulator card physically sits between the Correlator Card and the system backplane. It performs the following functions:

1. An interface between the Buffer card's output cabling and the Correlator card.
2. Clock generator for the Correlator card.
3. An interface between the ATNF control system and the Correlator Card,
4. A temporary accumulator for the Correlator data output.
3.2.2. Interface between the Buffer card's output cabling and the Correlator card.

Signals enter this card from the one or two Buffer cards as balanced ECL. The signals are then passed through a crosspoint switch which allows any data stream into the correlator to be selected from any of the data lines coming from the buffer card. This will allow a variety of configurations to be enabled quite easily. After the data has emerged from the crosspoint switch, it is re-synchronised then converted to single ended ECL and then passed to the Correlator card.

3.2.3. Clock generator for the Correlator card.

The correlator clock is sent with the data from the Buffer card. The timing of the clock is similar to that between the Samplers and the Buffer card; the edge of the clock signal is aligned with the change in the data. See the timing diagram for timing constraints. There is very little processing of the clock signal, other than inserting a delay, and appropriate buffering. All re-synchronising is then done with this delayed and buffered clock signal. The clock signal is also divided down by either 2 X or 4X converted to TTL and fed to the master FPGA. This allows the existence of the clock signal to be monitored as well as phase locking an on board VCO for complete system synchronisation.

3.2.4. Interface between the ATNF control system and the Correlator Card,

There are 2 parts to this section; the general configuration function, and the runtime control function. The general configuration function, allows the BCC to configure the hardware, both on this card and the attached NRAO Correlator Card. This includes signal data path selection, input clock selection, Event Generator signal selection, configuration of the Accumulator FPGAs as well as Accumulator functional setup, and the configuration of the registers on the NRAO Correlator card. As the FPGAs that make up the Accumulator are interconnected to the internal PCC bus, correlated data may be read directly from the Correlator ICs or from the accumulator by the BCC.
The run-time control toggles the various Event Generator signals and other signals including the Blank signal from the Buffer card. Some run-time control will come from the Event Generator, and
some will be automatically generated on the card. For any rapid switching, such as with short Pulsar periods or the like, the control signals will need to be generated by some automatic means such as internal counters or a digital signal synthesiser, as the current ISA ATNF Event Generator can only generate events at a sustain rate of one every $100-200 \mathrm{nS}$. The final configuration may be determined by the functionality designed into the various FPGA's firmware.

3.2.5 Temporary Accumulator.

The temporary accumulator accumulates correlated data in a separate buffer to that built into the Correlator ICs. While not necessary for simple correlation strategies, the Accumulator is necessary whenever very long integrations are required, or whenever the data must be time sliced, such as with Pulsar binning, noise calibration signal use etc.
For simple correlation, the accumulator may be completely by-passed, so that the CCC directly reads the buffers built into the Correlator ICs.
The Accumulator is made up of 2 (near) identical banks. There status is defined by a common signal such that when in one state, Bank "A", is accumulating, while Bank "B" can be accessed by the CCC, and when in the other state, Bank " A " can be accessed by the CCC, while Bank " B " is accumulating.
Each bank of the Accumulator memory is made up of 4×72 pin SIMMs. Into each of these SIMMs high speed static memory modules can be installed. The current design calls up modules of 32 X 256 K each, giving each bank a total capacity of 4 MB , or 1 Mword. The speed of the memory is dependent on the data transfer/accumulator rate from the correlator ICs and the speed of the Accumulator FPGA ICs. For maximum data transfer/accumulator rate from the correlator ICs, and medium speed FPGAs a read or a write cycle must take less than $\sim 20 \mathrm{nS}$. Thus a memory speed of faster than this would be required. With the medium speed FPGAs pipelining of the addition operation is required. This means that reads from a series of correlator ICs, will need to have a short delay between them. See the section titled "Performance and Operational Constraints" for understanding limitations on functionality for a given amount of accumulator memory.

3.3. Power Consumption.

The Power consumption of the correlator system is frequency dependant.

3.3.1. Data Buffer card.

Nominal power requirements (amps):

	+5 V	-2 V	-5.2 V	$\operatorname{Power}(\mathrm{~W})$	Comment
Standby	2.1	1.7	3.1		All logic configured, no clock.
1GHz B/W	6.0	1.8	3.2		
2GHz B/W	9.9	1.9	3.3	70.5	Estimated

3.3.2 Accumulator/Correlator card combination.

The following is the power requirements for an Accumulator/Correlator card combination with 8 correlator ICs and one SIMM in the accumulator running in a basic mode. A typical basic mode would include 12 Hz dump rate to the accumulator, and an integration time of 5 seconds. Increasing the dump rate will cause an increase in current demand.
Nominal power requirements (amps):
$+5 \mathrm{~V} \quad-5.2 \mathrm{~V} \quad$ Power(W) Comment
Standby
1 GHz B/W
$4.6 \quad 4.2$
2 GHz B/W
6.5
$8.4 \quad 4.2$
63.8 Estimated

Appendix A.

Buffer Card Clock Generation Timing Analysis.

Synchronous design techniques has been implemented in the design of the buffer card as much as possible. This method removes many (but not all) of the subtle delays required in the various clocks around the board. This appendix is an analysis of the timings of the various clocks and data streams on the board.

1.0 Input Section.

This stage takes the 256 MHz ECL data from the cable, broadens it out and slows it down to 128 MHz TTL. The master clock signal is supplied with the data. It has a frequency of half the data rate. The maximum data rate is 256 M bits per second. Thus the maximum incoming clock rate is 128 MHz .
To de-multiplex the data both the rising edge and the falling edge are use to clock the data into holding registers. The master clock signal's edges are co-incident with the data edges. Figure A1 shows the input stage.

FIGURE A1
INPUT STAGE TIMING (ECL Clocks)

Name	Symbol	Min	Typ	Max	Units
Raw Data Setup ${ }^{1}$	tsu1	50	-100		pS
Raw Data Hold ${ }^{1}$	thold 1	300	100		pS
Propagation delay ${ }^{1}$	tpd1	600		1000	pS
Raw Data Setup ${ }^{2}$	tsu2a	1000			pS
Raw Data Setup ${ }^{2}$	tsu2b	1000			pS
Raw Data Hold ${ }^{2}$	thold2a	1000			pS
Raw Data Hold ${ }^{2}$	thold2b	1000			pS
Propagation delay ${ }^{2}$	tpd2	2900		7400	pS
Delay chip min delay ${ }^{3}$	tdelay-chip	1240		1765	pS
Input Data Buffer delay ${ }^{4}$	tin-buffer	400		1450	pS
Input ClockBuffer delay ${ }^{6}$	tin-buffer	360		710	pS
Clock Buffer delay ${ }^{5}$	tclk-buffer	470		700	pS

Notes:

1. MC10E143.
2. SN10KHT5574.
3. MC10E196
4. MC10H115
5. MC10EL15
6. MC10EL57

As the clock buffer skew is negligible ($\sim 50 \mathrm{pS}$), it is ignored. The input setup performance of the MC10E143 is always within the input performance of the SN10KHT5574.

Signal spread.

The following table indicated the amount of spread between the data signal and the clock signal. A negative value indicates clock lags data. As there needs to be at least 1000 pS hold time (tholda) and 1000 pS setup time (tsu2a), for a clock period of $3906 \mathrm{pS}(256 \mathrm{MHz})$ total delay must lie between -1000 and -2906 pS .
Clock Error is the time difference of the clock signal and the data at the input to the board.
Clock P_{d} is the propagation delay of the clock circuit.
Data P_{d} is the propagation delay of the input buffers.
Rel Error is the relative error between the two at the appropriate data register inputs.
$\Delta \mathrm{T}$ is the amount of extra delay inserted by the delay chip to meet the minimum setup time or hold time for the slowest register.

Clock Error	Clock $_{\mathrm{P}}$	Data P_{d}	Rel Error	$\Delta \mathrm{T}$	
-250	-2070	1450	-870	130	Fastest clock, slowest data
0	-2070	1450	-620	380	
250	-2070	1450	-370	630	
-250	-3175	400	-3025	1881^{1}	Slowest clock, fastest data
-250	-1410	400	-1310	0^{2}	
0	-3175	400	-2775	0	
250	-3175	400	-2525	0	
-250	-2070	400	-1920	0	Fastest clock, fastest data
0	-2070	400	-1670	0	
250	-2070	400	-1420	0	
-250	-3175	1450	-1975	0	Slowest clock, Slowest data
0	-3175	1450	-1725	0	
250	-3175	1450	-1475	0	

Notes:

1. Under these circumstances the hold time is violated; the clock must be delayed into the next data period. The threshold clock rate where delay need no longer apply is $\sim 248 \mathrm{MHz}$.
2. With Delay chip bypassed. With Delay Chip bypass selected the clock buffer chip inserts an additional 50pS.

These calculations use worst case propagation delays to calculate the extremes of time spread. If such component spread does occur, there is no one delay chip setting that will satisfy all conditions; it may be necessary to use components with similar or appropriate propagation delays. Times used in this calculation were from the appropriate data books. These figures were based on test loads of 50 pF . The actual loads will be around half this, so faster propagation times may affect various margins.

2.0 Second Stage.

This stage takes the 128 MHz TTL data and broadens it out and slows it down to 64 MHz . This uses a clock derived from the Master Clock signal.

FIGURE A2
SECOND STAGE TIMING (TTL Clocks)

Name
Symbol Min
Typ
Max
Units

Data Setup 1	tsu3	1.1			nS
Data Setup 2	tsu3	6.0			nS
Data Hold 1	thold3	1.3			nS
Data Hold 2	thold3	0		nS	
Propagation delay 1	tpd3	2.7		5.9	nS
Propagation delay	thd	tpd			12.8
Clock Divider delay 3	tclk-buffer	420	540	630	nS
Clock Buffer delay 4	tclk-buffer	1.7		4.1	nS

Notes:

1. 74ABT16374.
2. XC4013E-2, slew rate limited.
3. MC10EL32.
4. MC10ELT25.

Signal spread.
The following table indicated the amount of spread between the data signal and the clock signal. A negative value indicates clock lags data. As there needs to be at least 1300 pS hold time (tholda) and 1100 pS setup time (tsu2a), for a clock period of $7812 \mathrm{pS}(128 \mathrm{MHz})$ total delay must lie between -1100 and -6512 pS .
Delay Chips is the number of delay chips cascaded together.
Clock P_{d} is the propagation delay of the clock circuit.
Data P_{d} is the propagation delay of the ECL to TLL registers/translators.
Rel Error is the relative error between the two at the appropriate data register inputs.
$\Delta \mathrm{T}$ is the amount of extra delay inserted by the delay chip to meet the minimum setup time or hold time for the slowest register.

Delay Chips	Clock P_{d}	Data P_{d}	Rel Error	$\Delta \mathrm{T}$	
0	-2950	7400	4450	5550	Fastest clock, slowest data
1	-6330	7400	1070	2170	
2	-9710	7400	-2310	0	
0	-3610	2300	-1300	0	Slowest clock, fastest data
1	-5375	2300	-3075	0	

These calculations use worst case propagation delays to calculate the extremes of time spread. If such component spread does occur, there is no one delay chip setting that will satisfy all conditions; it may be necessary to use components with similar or appropriate propagation delays.
Times used in this calculation were from the appropriate data books. These figures were based on test loads of 50 pF . The actual loads will be around half this, so faster propagation times may affect various margins.

Appendix B.
 Bill Of Materials.

1.0 Buffer card.
1.1 Completed cards:

Project	Quantity	Comment
SEST	3	2 Working units +1 Spare

		R212 R213 R214 R215 R216 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10	
			RT11 RT12 RT13 RT14 RT15 RT16 RT17 RT18 RT19RT20 RT21 RT22
			RT23 RT24 RT25 RT26 RT27 RT28 RT29 RT30 RT31 RT32RT33 RT34
			RT35 RT36 RT37 RT38 RT39 RT40 RT41 RT42 RT43 RT44 RT45RT46
			RT47 RT48 RT49 RT50 RT51 RT52 RT53 RT54 RT55 RT56 RT57

2.0 Buffer Backplane.
2.1 Completed cards:

Project	Quantity	Comment
SEST	1	1 Bin
Pulsar	1	1 Bin
Ateg	2	2 Bin

2.2 Other:

Project	Quantity	Comment
Prototype	1	

2.3 Parts List

Part Quantity

Questions/Notes.

4.0 Miscellaneous.

4.1 Data Buffer Card V1.0 faults and missing features.
4.1.1 Data Buffer Card V1.0.
\checkmark "Lamp Test" signal wrong sense. Move the Master Done single gate driver to before the quad 2:1 mux.
\checkmark More Event Generator lines to the MCC Xilinx.
\checkmark BCC \sim WR and \sim STRB to the MCC Xilinx.
\checkmark Schottky snuffer diodes back to front.
\checkmark Need for parallel resistors in 3.3V regulators.
\checkmark Larger footprints for single gate devices (SOT-535?).
Large holes for wirewrap wires for unexpected modifications.
\#ADSC on memory ICs should connect to GND.
Missing 64 MHz clock signal to MCC Xilinx.
Test points for DONE pins.
Lengthen pads on 100 pin QFP's (or move them out a bit).
Tie unused pins on U150 (74×125 BLANK driver) to driven source.
Nets B1_A_D47 and B0_A_D47 on pins 5 and 6 respectively on U80 need to be swapped.
*More control lines from MCC to INPUT Xilinx and possibly DEMUX Xilinx.
One or more large tantalum capacitors on 3.3 V rails.
Check timing of clock signals to 'input' Xilinx and '374s downstream. (reverse order of delivery of balanced ECL signal to 10ELT25's?)
More signal testpoints using vias.
Need to disable "output enable" signals on the 74LVT1637s that drive the signals to "DEMUX" until "DEMUX" has been configured.
Labels on LEDs - Xilinx Done's.
Lengthen 128 MHz signal to MUX Xilinx by $\sim 1 \mathrm{nS}$.
Feed MCC Xilinx with 128MHz signal (p162?) and drive ELT24 chip (p163?) for divided clock. Add an ECL mux to 128 MHz signal feeding backplane drivers for lower clock rates.
Run signal from MUX Xilinx to ALIGN Xilinx to disable ALIGN's output if MUX Xilinx not configured.
Run signal from ALIGN Xilinx to DEMUX Xilinx to disable DEMUX's output if ALIGN Xilinx not configured.
Run signal from DEMUX Xilinx to MCC Xilinx to disable MCC's outputs to 74LVT16374 output enable pins if DEMUX Xilinx not configured. Use jumper to option permanent enable.
Run signal from INPUT Xilinx to 74ABT16374's output enable pins disable these if INPUT Xilinx not configured. Use jumper to option permanent enable.
Fix problem of asynchronous Noise Cal switching signal.
Fix problem of -WAIT line being pulled down when board power off.

4.1.2 Data Buffer Card Clock Generator.

Missing links to 'SELx' pins on U5.
Link LK5 needs to be 2 mm .
4.2 Data Buffer Motherboard V1.0 faults and missing features.

Need to move event generator connector lower (ie further away from BCC IF connector) by around 300 mil .
No connection for some decouple caps.
Need some large decoupling capacitors.
4.3 Correlator Accumulator Card V1.0 faults and missing features.

PCB not right size (short?).
Swap signals \sim BCC_WAIT and \sim BCC_REQ going to backplane connector.
Place default links on LK6, LK7 and LK8.
Schottky snuffer diodes back to front.
Need for parallel resistors in 3.3 V regulators.
Larger footprints for single gate devices (SOT-535?). Investigate using quad packs at some locations.
Wire wrap wire holes for unexpected modifications.
Interference between U85 and lower EURO connector mounting tab.
Test points for DONE pins.
Mounting holes for regulators need to be > 3mm dia.
Connections pin holes for regulators need to be bigger.
Disconnect the "Master Reset" pin from GND on all the 10H604 data output drivers.
One or more large tantalum capacitors on 3.3 V rails.
More signal testpoints using vias.
TQ2018 foot print needs modification.
Buffer_blank_0 needs (optional) termination on board.
-DMA_TALK needs to connect to pin 109 on BCC Xilinx.
Fix problem of -WAIT line being pulled down when board power off.
4.4. Correlator Accumulator Motherboard faults and missing features.

Poor labelling around EG 34 way connector, 26 way BCCIF connector and the 2 X 40 way DMA connectors.
All buffer_blank_x (excluding buffer_blank_0) needs (optional) termination on board.
A set of terminals that connect into the 2 interrupt lines in the DMA bus.
4.5. Greenbank Correlator Card Production modifications.

To meet the requirements for the wideband correlator, some modifications need to be performed to the Greenbank Correlator Card. These modifications are all non-destructive and can be easily reversed if required.

1. Remove R1 and R2.
2. Remove C 1 and replace with a wire link.
3. Remove all wire links at sites 4 A and 6 A .
4. Remove SIP resistor packs at sites 2AL, 3AL, 7AL, and 8AL.
5. On underside of board, using wirewrap wire, connect one wire in the following sequence: 4A-3, 5A-3, 4A-5.
6. On underside of board, using wirewrap wire, connect one wire in the following sequence: 6A-3, 5A-4, 6A-5.
7. On underside of board, using wirewrap wire, connect a wire between the following pins on 2D, 4D, 6D and 8D: pin $8-\operatorname{pin} 40$, pin $10-\operatorname{pin} 36$, pin $21-\operatorname{pin} 67$, pin $20-\operatorname{pin} 68$.
\% \% END \% \%
