Opportunities for maser studies with the Square Kilometre Array

Anne Green
University of Sydney

http://www.skatelescope.org
Outline of talk

- What is the Square Kilometre Array? The concept of the Reference Design.

- A progress report: Where will it be located and what is the timeline?

- What are the capabilities?

- What are the key science opportunities involving masers?
What is the SKA?

- The Square Kilometre Aray (SKA) is a paradigm-shifting radio telescope for the next generation, a truly global machine, to operate for ~50 years.

- Aim: a unique instrument to answer many of the “big” questions in astronomy e.g. what is the nature of Dark Energy, are we alone in the Universe, how did galaxies and black holes form, what is the origin & evolution of magnetism, can pulsars and black holes detect gravity waves – was Einstein right?
Organisation of the SKA Project

- Global project from the start: >50 institutes in 17 countries
- International Steering Committee leads the project development: ISPO, 6 working groups
- Engagement with inter-government agencies to establish governance model, funding strategy
- International collaborations – technology demonstrators & preparation for key science projects in progress
The Concept of the SKA

- Data network connecting sensors of the incident electromagnetic field to a correlator → interferometer array
- Sensing antennas highly concentrated in the central 5 km and further distributed in stations at distances up to ≥3000 km
- Antennas and stations connected via wide-band fibre links (100 Gbit/s) to the central data processor (10 – 100 Pflop/s)
- Small dishes + smart feeds and aperture arrays cover the frequency range 0.1 – 25 GHz
- Telescope to be built in stages - Phase 1 will be 10% of the full collecting area, at the array centre, able to do unique science
Two sites short-listed for consideration:
Australia & New Zealand
South Africa + 7 countries

Key issues: very low RFI, large site, low ionospheric & tropospheric turbulence

Reference Design developed to:
Focus engineering & science efforts
Provide basis for detailed costing
Provide recognizable image for SKA
Reference Design

Inner core

Wide-angle radio camera
radio “fish-eye lens”
Australia + NZ
South Africa + 7 countries
SKA timeline

- Initial concept
- First SKA Working Group
- ISSC MoAs
- Science Case published
- Site ranking
- Site Selection
- Inter-governmental discussions
- ‘1% SKA’ Science
- ‘10% SKA’ Science
- SKA Complete

- 92
- 96
- 2000
- 04
- 05
- 06
- 07
- 08
- 09
- 10
- 14
- 18
- 22

Feasibility study
Concept exposition
Optimise Reference Design
Define SKA System
Phase 1 Build 10% SKA
Full array Build 100% SKA

Construct 1% SKA “pathfinders”
What capabilities we can expect?

- Sensitivity to detect and image atomic hydrogen & other molecules at the edge of the universe → very large collecting area (~1 km²)
 line detectability ~50 times improvement on current telescopes

- Fast surveying capability over the whole sky → very large field of view (1 square degree at 1.4 GHz) FoV =18 sq arcmin @ 20 GHz

- Angular resolution to make detailed images of the structures of disks, planetary gaps and how they change → large physical extent (baselines > 3000 km) \(\Theta = 20/f_{GHz} \) mas

- A wide frequency range (0.1 – 25 GHz) to handle the science goals

SQUARE KILOMETRE ARRAY
Total Cost 1 B€; projected operating cost 70 M€ p.a.
Science goals for masers

- **Early Universe** (Dark Energy, H_0 & BH evolution):
 - H$_2$O megamasers in AGNs
 - OH megamasers in starburst galaxies
 - OH masers in supernova remnants

- **Our Galaxy** (star formation & dynamics):
 - Multiple maser species to image disks, outflows, young massive protostellar objects
 - Masers to probe spiral structure

Strength of the SKA – great sensitivity & wide field of view
(angular resolution limited if assume a real-time connected array)
1. NGC 4258 – nuclear disk H$_2$O masers

Seyfert 2/LINER galaxy
$z = 0.0017$
$D = 7.2 \pm 0.5$ Mpc
Thin, warped Keplerian disk (diam ~ 0.6 pc)

Claussen et al. (1984)
Herrnstein et al. (1999)
Nakai et al. (1993) etc
2. MK 1419 – a distant nuclear disk

MK 1419 (NGC 2960)
LINER galaxy
$z = 0.016$
$D = 69$ Mpc
Disk scale 0.33 pc/mas

3 groups H$_2$O masers
Only systemic velocity drifts

How predict new targets?

Current low detection rate is sensitivity limited

Henkel et al. (2002)
3. H₂O jet masers

Interaction between radio jet & encroaching molecular cloud

Variability and correlation with continuum suggest emission from shocked region at interface rather than simple amplification of radio jet

See velocity shifts from systemic value

Gas entrained by jet outflows?

More examples in Henkel et al. (2005)
e.g. Mrk 34 @ D = 205 Mpc

Claussen et al. (1998)

Peck et al. (2003)
4. Another class of H$_2$O masers

First detection of FRII in radio loud galaxy: 3C 403z = 0.06

Masers could indicate accretion disk or jet interaction

Evidence that dense molecular gas is present (>107 cm$^{-3}$) in thick molecular torus

Disk can extend up to 100 pc from AGN

Tarchi et al. (2003)
5. Type 2 quasar at $z = 0.66$

Most distant water maser known to date
D = 2.4 Gpc
Size scale = 10 pc/mas
$L = 23,000 \ L_\odot$

Only 1 component – no evidence of disk geometry

Molecular gas exists at large redshifts – CO observations

Distances to similar objects in the Hubble flow enables a direct measure of H_0 and a test of cosmological models and dark energy.
6. Masers & dusty star formation history

OH and H$_2$O masers are found in many ULIRGs. Maser luminosity ~correlates with FIR luminosity – analogues of Milky Way massive star-forming regions? (Henkel et al. 2005)

Determine redshift distribution of distant dusty starburst galaxies using masers. e.g. at z~3, expected $S_{\text{OH}} = 0.4$ mJy
H$_2$O for z~1-10 is in range 2-11 GHz

For HLIRGs, OH maser flux ~1 mJy at z ≥4

Townsend et al. (2001) Separation (OH @ higher z & luminosity) may be real or selection effects
OH megamasers ↔ starburst galaxies – undetected in some LIRGs?

Some in extreme starbursts: ≤ 100 pc in central regions, with high concentration of molecular gas; H_2CO also in a few sources

IRAS 14070+0525 most distant OH megamaser to date ($z = 0.265$)

Major mergers: III Zw 35 is interacting pair (Parra et al. 2005)

Baan et al. (1992)

Pihlstrom et al. (2001), Diamond et al. (1999)
Are extragalactic H_2O kilomasers associated with nuclear activity (i.e. weak megamasers) or with star-forming regions (the Galaxy)?

e.g. NGC 2146 (Tarchi et al. 2002)

Massive stars are distant – SKA has sensitivity to find protostellar Keplerian disks, outflows

UCHII regions detected to 50 Mpc

Spectral resolution: ≥ 4000 channels dual polarisation, 4 GHz BW max

Angular resolution: 1 mas (H_2O) up to 15 mas (OH)

Argon, Reid & Menten (2003)
Galactic options continued

- More YSOs – OH, H2O, methanol, (no SiO); add clarity to disk versus outflow issue
- Test methanol Class II absence near low mass star-forming regions
- Extragalactic 1720 MHz OH masers in SNRs; expect 3 mJy detection at M33 (1 Mpc)
- Image stellar photosphere & winds in AGB stars – eclipsing planets?
- Distance precision – proper motions, parallax, Galactic structure (SKA ++)

Molecular outflow around a YSO
Xu et al. (2006)
Summary – what masers gain with the SKA

- Increased numbers of sub-parsec disks around AGNs for disk physics & BH mass studies – big improvement in sensitivity but distance may be limited to ~500 Mpc; complete local sample.
- Detect high density gas in parsec nuclear regions of high redshift galaxies – no distance limit. For resolved disks, precise distances & better H_0 estimate, insights into dark energy.
- Find gigamasers to get redshifts for luminous, dusty starburst galaxies → star-formation history.
- Many more disks & outflows in star-forming regions & dusty protostars; image CSEs around evolved stars; shock interactions (SNRs) in nearby galaxies; proper motions; magnetic fields everywhere.
Read more ….

“Science with the Square Kilometre Array”

edited by Carilli & Rawlings