OH (1720 MHz) Masers: Signposts of SNR/Molecular Cloud Interactions

Crystal Brogan (NRAO)

W. M. Goss (NRAO), M. Claussen (NRAO), I. Hoffman, Anita Richards (Jodrell Bank), C. Chandler (NRAO), Anne Green (U. Sydney), Jasmina Lazendic (MIT)

The Discovery of OH (1720 MHz) SNR Masers

A Brief History:

- (1968) Goss & Robinson observe "anomolous" OH (1720 MHz) emission toward SNRs W28, W44, & GC
- (1993) Frail, Goss & Slysh identify with maser emission
- (1996, 1997) SNR surveys by Frail et al.; Green et al.; Yusef-Zadeh et al. (1996, 1999); Koralesky et al. (1998)

The Discovery of OH (1720 MHz) SNR Masers

- > OH (1720 MHz) masers are found toward 10% of Galactic SNRs (~20) [and one in the LMC, Brogan et al 2003]
- All but one SNR OH maser is inside the Molecular Ring
- > They are rather weak, < few 10s of Jy
- > Has a lower flux density cutoff at least for compact emission (e.g. methanol class II)
- No accompanying mainline OH or H₂O masers

Properties of SNR OH (1720 MHz) Masers

- Collisional pump requires strict range of physical conditions (Wardle 1999; Lockett et al. 1999):
 - Temperature 50 to 125 K
 - Density 10^4 to 10^5 cm⁻³
- These conditions are easily met when a Ctype SNR shock hits a molecular cloud
 - X-rays from SNR help dissociate H₂O
- Only shocks (more or less) <u>transverse</u> to our line of site give enough velocity coherence
- Can get magnetic field strength from the Zeeman effect (Z=0.65 Hz/ μ G)
 - ⇒ Provides only means of <u>directly</u> observing strength of B-field in SNRs (but only if we can figure out the proper conversion)

These masers probe SNR/ molecular cloud interactions

Simplified Model of SNR/Molecular Cloud Interaction

Based on Wardle (1999) and Lockett et al. (1999) models

A few notes about directions and angles

- •The shock compression suggests that the B-field should be in the plane of the shock only this component is amplified
- Linear P.A. can be || or \bot to the magnetic field
- Linear P.A. $_{\rm synch}$ is \perp to the magnetic field

SNR (1720 MHz) Properties (< 2002)

- > Simple Zeeman patterns with B_{θ} = 0.2 5 mG and weak (~ 10%) linear polarization
- ➤ Magnetic pressure ≈ ram pressure
- > B-field appears to be stronger with higher resolution
- > Except GC, scatter broadening not important and they are not significantly variable
- > Significant internal Faraday depolarization unlikely because Faraday length > gain length
- > Show excellent correlation with density/shock tracing molecular gas
- > Follow-up revealed shocked molecular gas in previously unknown cases

Claussen et al. (1997, 1999, 2002); Koralesky et al. (1998); Frail & Mitchell (1998); Yusef-Zadeh et al. (1999); Brogan et al. (2000)

Greyscale: CO (1-0) emission Reynoso & Mangum (2000)

Open Questions

- What are the detailed properties of the polarization and can we distinguish between theoretical models?
- How is the maser flux distributed on small size scales and what are the brightness temperatures?
- Does the B-field really increase with higher resolution ⇒ which might be indicative of more tangled B-fields on larger size scales?
- Are these masers saturated?

Zeeman Effect in SNR OH Masers

SNR OH (1720) maser line splitting is not fully resolved so that:

 $V \sim c Z B dI/2dv$

But for these masers the line splitting/line width ~ 0.1

i.e. NOT splitting << line width

⇒ this case has not been studied in detail, limiting analysis may not apply

Could be different than thermal case where $c=\cos\theta$

(Elitzur 1998; Watson & Wyld 2001)

The keys to understanding the B/maser relationship:

- linear polarization
- high enough S/N to measure line splitting between R-L directly

OH (1720 MHz) Masers in W28

Morphology of W28 Masers

At D~2.5 kpc 50 mas = 2 x 10¹⁵ cm (125 AU)

Merlin V_{lsr} range = 1.4 km/s VLBA V_{lsr} range = 0.1 km/s

~50% of VLA flux recovered by MERLIN data

~70-85% of MERLIN flux recovered by VLBA data

W28 Linear Polarization

P.I. = 2% - 20%

P.A.maser Vectors rotated by 90°

OH (1720 MHz) Masers in W44

Red = MIPSGAL 24 µm Green = GLIMPSE 8 µm Blue = VLA 90cm

P.I. = 7% - 14%

P.A._{maser} vectors NOT rotated by 90°

OH (1720 MHz) Masers in W51B

Red = MSX 8 μ m Green = VLA 20cm Blue = VLA 90cm

- One of most luminous SFRs in Galaxy
- ➤ Located at the tangent point of Sagittarius Arm ⇒ lots of material piled up along the line of sight; very complex kinematics

MERLIN & VLBA Toward W51C Maser

- VLBA Resolution 12.5 x 6.3 mas
- At MERLIN and VLBA scales, both regions are missing about half of the VLA flux density

Brogan (2003); Brogan et al., in prep.

Spitzer mid-IR and JCMT Observations

Red = GLIMPSE 8 μ m Green = GLIMPSE 4.5 μ m Blue = GLIMPSE 3 μ m

White contours show 90cm VLA Like W44, P.A. is | to shock front

W51 in Radio and X-rays

⇒ Previously undiscovered SNR in front of W51C responsible for masers

Are OH (1720 MHz) SNR Masers Saturated?

Saturated

Stokes $I=\overline{I_{th}}$ $\Rightarrow \Delta v = Doppler width$ Stokes $V_{th}=b dI_{th}/dv$

Unsaturated

Stokes $I=I_{th}e^{\tau(v)}$ $\Rightarrow \Delta v \leftrightarrow Doppler width$ Stokes $V=V_{th}e^{\tau(v)}=(b\ dI_{th}/dv)\ e^{\tau(v)}$

Most likely somewhat saturated

- · Goodness of fit
- High Brightness temperatures
- Non-variability

An Uncomfortable Coincidence?

 $q = 1 - 2/(3\sin^2\theta)$

GKK for completely saturated case

For all SNR OH (1720 Mz) masers to date, q = 2 - 20% implying $\theta \sim 60$ degrees for ALL 3 sources

However, P.A. $_{maser} \perp$ or || to field breaks degeneracy

Q positive for \perp case and $10\% \Rightarrow 60^{\circ}$

Q negative for || case and $10\% \Rightarrow 40^\circ$

Cos(θ) Watson & Wylde (2001) and not inconsistent with Elitzur (1996, 1998)

An Interesting Correlation...

$$B_{RL} = (v_{RCP} - v_{LCP})/Z$$

$$B_{\theta} = V/(c Z dI/2dv)$$

Conclusions

- What are the detailed properties of the polarization and can we distinguish between theoretical models?
 - Not quite there yet but it is encouraging
- How is the maser flux distributed on small size scales and what are the brightness temperatures?
 - Core-Halo structure with about $\frac{1}{2}$ of flux missing at MERLIN/VLBA scales (see J. Hewitt talk)
 - Tb $\sim 10^{9-10} \, \text{K}$
- Does the B-field really increase with higher resolution ⇒ which might be indicative of more tangled B-fields on larger size scales?
 - No, this is purely a spatial/spectral blending issue, but maybe it does indicate something interesting about turbulence
- Are these masers saturated?
 - Yes, at least moderately so

