Twenty-Six-Year Monitoring of Water Masers

G.M. Rudnitskij\(^1\), M.I. Pashchenko\(^1\), V.F. Esipov\(^1\), V.A. Samodurov\(^2\), I.A. Subaev\(^2\), A.M. Tolmachev\(^2\) and E.E. Lekht\(^1,3\)

\(^1\)Sternberg Astronomical Institute, Moscow State University, 13 Universitetskij prospekt, Moscow, 119992 Russia (gmr@sai.msu.ru)

\(^2\)Pushchino Radio Astronomy Observatory, Astro-space Center of the Lebedev Institute of Physics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia (sam@prao.ru)

\(^3\)Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No. 1, Apdo Postal 51 y 216, 72840 Tonantzintla, Puebla, México (lekht@inaoep.mx)
Contents of the work

- A sample of H_2O maser emission sources has been observed since 1980. The sample includes 125 sources (65 star-forming regions and 60 late-type variable stars).
- The purpose of this work is to study the variability of the H_2O maser emission on a long time interval. The observations are carried out on the average once per month.
- Since 1994 late-type stars are observed also spectroscopically to find out correlation between maser variations and optical emission lines.
Radio spectroscopy

- RT-22 radio telescope (Pushchino, Moscow Region)
- Helium-cooled FET amplifier of the 1.35-cm band ($T_N = 150-200$ K)
- 2048-channel autocorrelation spectrometer (velocity resolution 0.082 km/s)
- Sensitivity at the 3σ level about 10 Janskys
Star-forming regions

- HII regions
- Young stellar clusters (W31)
- Bipolar outflows
- IRAS sources in cool interstellar clouds
- Protoplanetary discs (S255, NGC 7538 and others)
Maser in a protoplanetary disc (S255)

S255: H$_2$O line profile
5 February 2002
Rudnitskij et al. Twenty-Six Year Monitoring of Water Masers

Sgr B2
H$_2$O flares

Rapid variability in the H$_2$O maser W33B
58 spectra (6.5 min exposure each)
Rudnitskij et al. Twenty-Six Year Monitoring of Water Masers

IAU Symposium 242, Alice Springs

NGC 7538

Velocity drifts of the H2O features (chains)

Integrated H2O line flux

Turbulent vortex

Sample H2O spectra

Anticorrelation

Intrgrated flux, Jy km/s

Radial velocity, V LSR, km/s

Rudnitskij et al. Twenty-Six Year Monitoring of Water Masers

IAU Symposium 242, Alice Springs
Stellar masers

<table>
<thead>
<tr>
<th>H$_2$O</th>
<th>H$_2$O + Hα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Cas, IK Tau, W Eri, RS Eri, R Tau, NV Aur, IRC+60154, AW Tau, IRC+60169, U Lyn, GX Mon, VY CMa, Z Pup, QX Pup, X Hya, U CVn, RU Hya, Y Lib, WX Ser, VX Sgr, IRC- 10414, V1111 Oph, RW Lyr, IRC- 20540, RT Aql, V391 Cyg, SY Aql, DR Cyg, NML Cyg, UU Peg, AM Cep, PZ Cas</td>
<td>R Aql, RR Aql, U Aur, RX Boo, R Cas, S CrB, R Crt, S Crt, U Her, W Hya, R Leo, R LMi, U Ori, R Peg, S Per, R Tri, RS Vir, RT Vir</td>
</tr>
</tbody>
</table>

Semiregular variables underlined
Optical spectroscopy

- 125-cm telescope, Crimea
- Grating spectrograph
- CCD cameras, Santa Barbara Instruments Group
- Sensitivity in the Hα region: a spectrum of an 11th magnitude star can be obtained in a 10-min exposure.
Mira-type variable R Leo, \(P = 310^d \)

Optical spectrum

H\(_2\)O line

H\(_\alpha\)-H\(_2\)O integrated flux

Rudnitskij et al. Twenty-Six Year Monitoring of
Water Masers
IAU Symposium 242, Alice Springs

R Leo

\(F_{\nu} \), \(10^{-12} \) erg cm\(^{-2}\) s\(^{-1}\) \(\AA^{-1} \)

\(\lambda \) \(\AA \)

\(V_{\text{r,sys}} \), km s\(^{-1} \)

\(\log(F(H_2O)) \), W m\(^{-2} \)

\(\nu(H_\alpha) \), erg cm\(^{-2}\) s\(^{-1} \)
Mira-type variables S CrB and U Aur: visual light curves, $H\alpha$ and H_2O integrated fluxes

Rudnitskij et al. Twenty-Six Year Monitoring of Water Masers
IAU Symposium 242, Alice Springs
Model: Shock wave in a mira’s atmosphere

- Shock 1
 - H_α

- Shock 2
 - H_2O

- Star

- Postshock maser shell