BINARY MODELS
Summary Reference: Taylor, J. H., & Weisberg, J. M., ApJ 345:454 (1989)
BT Newtonian orbit at a given epoch, plus secular changes in the
orbital elements and redshift/time-dilation parameter gamma.
Reference: Blanford, R., and Teukolsky, S. A., ApJ 205: 580 (1976)
EH Relativistic model incorporating short-term periodic terms, including
Shapiro time-delay parameter and non-constant periastron advance
in the orbital motion, along with the Shapiro time-delay parameter
References: Epstein, R., ApJ 216: 92 (1977)
Epstein, R., ApJ 231: 644 (1979)
Haugan, M. P. ApJ 296: 1 (1985)
DD Theory-independent relativistic model; includes treatment of
short-term periodic terms, Shapiro delay and aberration.
References: Damour, T., and Deruelle, N. Ann Inst. H. Poincare
(Physique Theorique) 43: 107 (1985)
Damour, T., and Deruelle, N. Ann Inst. H. Poincare
(Physique Theorique) 44: 263 (1986)
DDGR Variation of DD model in which general relativity is assumed
correct, so free parameters are (in principle) only m1, m2.
Tempo also allows two further free parameters, XPBDOT and XOMDOT,
to measure deviations from GR values of PBDOT and OMDOT.
References: Taylor, J. H., in General Relativity and Gravitation, ed.
M. A. H. MacCallum (Cambridge Univ. Press), p. 209 (1987)
Taylor, J. H., & Weisberg, J. M., ApJ 345:454 (1989)
H88 Re-parameterized EH model
Reference: Haugan, M. P. 1988. Preprint. (See Taylor & Weisberg 1989.)
BT+ BT model with nonlinear periastron advance.
DDT DDGR modified to test two-parameter tensor-biscalar theories
Reference: Taylor, J. H., Wolszczan, A., Damour, T., and Weisberg, J. M.
Nature, 355: 132 (1992)
MSS Model for main-sequence/pulsar binaries.
Reference: Wex, N., astro-ph/9706086 (1997).
ELL1 Model for low eccentricity orbits using Laplace parameters
(EPS1=e times sin(omega), EPS2=e times cos(omega)) instead of e, omega.
Reference: Wex, N., unpublished.
BT1P BT model with two orbits: the first may be relativistic, the
second must be Keplerian
BT2P BT model with three orbits: the first may be relativistic, the
second and third must be Keplerian
BTX BT model with orbital motion expressed in frequency rather than
period. Orbital frequency may vary, either through instantaneous
jumps in binary frequency (jump size FBJ_x at time TFBJ_x) or through a
Taylor expansion around T0 (FB_x is x'th derivative of binary
frequency). Orbit size may also be written as a taylor expansion
(XDOT_x is x+1'th derivative of X=A SIN I)
Reference: Nice, D., unpublished
BTJ BT model with addition of up to 8 epochs at which steps in binary
parameters and pulse phase can be inserted and solved for. (RNM)
The following table summarizes the parameters used by each model. An 'x'
indicates a parameter fully implemented. An 'o' indicates the parameter is
used at a fixed value, but cannot be fitted. A '*' indicates the parameter
is used only to calculate other binary parameters, and is then ignored.
BT EH DD DDGR H88 BT+ DDT MSS ELL1 BTX BTJ
A1 x x x x x x x x x x x
E x x x x x x x x * x x
T0 x x x x x x x x * x x
PB x x x x x x x x x * x
OM x x x x x x x x * x x
TASC * x
EPS1 * x
EPS2 * x
FB * * * * * * * * * x
FB_1 * * * * * * * * * x
FB_x x
OMDOT x x x x x x x x x
OM2DOT x x
XOMDOT x
PBDOT x x x x x x x x * x
XPBDOT x
GAMMA x x x x x x x x
MTOT x x
M2 x x x x x
SINI x x x x x x
DTHETA x x
XDOT x x x x x x x x x x
X2DOT x
XDOT_x x
EDOT x x x x x x x x x x
EPS1DOT x
EPS2DOT x
DR o o o
AFAC o
A0 o o o o
B0 o o o
BP o
BPP o
BPJEP_x o
BPJPH_x x
BPJA1_x x
BPJEC_x x
BPJOM_x x
BPJPB_x x