

SWINBURNE UNIVERSITY OF TECHNOLOGY

Digital Backend Technology

Willem van Straten

Centre for Astrophysics & Supercomputing

ATNF Radio Astronomy School 2009

What's not Digital?

- Mechanical Systems:
 - □ reflector, drive, ...

- Analog Systems:
 - □ receiver, mixer, filter, chart recorder, ...

- Organic Systems:
 - □ human cognition

PROVE YOU'RE NOT A ROBOT

Digital Data Reduction

- Common constraints:
 - □ processing speed, bandwidth, capacity, cost
- Different technologies:
 - □ ASIC, FPGA, CPU, GPU, etc.
- The current state of the art
 - □ synergy between hardware/software

The Future

Common Constraints - Nyquist

- Analog-to-digital conversion
 Nyquist theorem: sampling rate = 2 * bandwidth
- Many astronomical signals are broadband (decametre to millimetre wavelengths)
- Signal-to-noise ratio (S/N)
 proportional to sqrt (time * bandwidth)

Common Constraints - Dynamic Range

- Data rate = 2 * BW * npol * nbit [bits/s]
- Early systems used 2 bits / sample
 - □ significant quantization error (noise and distortion)
- Modern need for dynamic range
 - ☐ mostly due to radio frequency interference (RFI)
 - □ 8 bits / sample now common

Common Constraints - Data Transport

- Transfer to memory of computational device
- Direct memory access (e.g. via PCI or VME bus)
- Ethernet (e.g. TCP/IP or UDP/IP)
- Intermediate storage (e.g. magnetic tape or disk)
- Memory bandwidth (b/w memory and processor)

Common Constraints - Processing

- Processor speed (MIPS, FLOPS)
- Real time vs offline:
 - □ Data storage facility (speed, capacity)
 - □ duty cycle: acquisition vs processing time
 - □ local or off-site computing resources
- Storage/handling of results:
 - □ Off site, tape archive

Common Constraints - Cost

- Initial technology purchase
- Research and development:
 - personnel and infrastructure
- Operational costs:
 - □ power consumption, cooling requirements, space
 - □ system administration and maintenance
 - □ data dissemination (web server)

Digital Backend Technology

- Hardware:
 - □ increasing flexibility and modularity
- Software:
 - □ increasing performance
- Distinction becoming increasingly blurry

Hardware-based Technologies

- Digital Signal Processor (DSP)
 - microprocessor optimized for digital signal processing
 - low latency, direct memory access, fast multiply-accumulate, etc.
- Application-specific Integrated Circuit (ASIC)
 - □ Hardware Description Language (HDL) design tools
 - design sent to manufacturer
- Field-programmable Gate Array (FPGA)
 - □ programmable logic (useful during R&D)
 - ☐ more flexible than ASICs

Software-based Technologies

- Central Processing Unit (CPU) [~Gflops]
 - execute computer programs (instruction sets)
 - high-level languages such as C++, Java, python, Matlab, etc.
- Graphics Processing Unit (GPU) [~Tflops]
 - ☐ Hardware graphics accelerators
 - □ CUDA, OpenCL
- Parallel computing [~Pflops]
 - multi-core, multi-processor computers (e.g. threads)
 - □ clusters, grids (e.g. Message Passing Interface)

What do backends do?

- Filter:
 - □ convolution by finite impulse response (FIR)
- Spectrometry:
 - □ ACF, FFT, polyphase filterbank, etc.
- Integration of statistical quantities:
 - □ for pulsar work, phase-resolved average

Two Examples at Parkes

- Pulsar Instrumentation:
 - □ need for time and frequency resolution
 - □ synthesis of hardware and software
- High-precision timing
 - □ real-time data reduction
- Pulsar survey
 - □ offline analysis on super computer

Radio Pulsars

- Rapidly spinning, highly magnetized neutron stars:
 - ☐ M ~ 1.4 solar masses
 - □ D ~ 20 km
 - □ B ~ 108 10¹⁴ G
 - □ P ~ 1 ms 10 s
- Radio beams from magnetic poles
 - □ stellar lighthouse

Dispersion removal backends

- Incoherent (post-detection):
 - □ analog filterbanks
 - □ digital filterbanks:
 - autocorrelation spectrometers
 - Fast Fourier Transform
 - polyphase filterbank (e.g. MPEG audio)
- Phase-coherent (pre-detection):
 - baseband recording and processing systems
 - tape, disk, or real-time

Phase-coherent dispersion removal

- Observed voltage signal is deconvolved
 - ☐ impulse response function of ISM plasma dispersion
- Convolution performed in frequency domain
 - □ more efficient, requires FFT
- N_{fft} proportional to DM (and ~ $\delta v/v^3$)

Phase-coherent dispersion removal

- \blacksquare O_{FFT}(N) = 5NlogN (FFT benchmark)
- flops = $5NlogN / t_{FFT}$
- DM=10 and $\delta v = 16$ MHz
 - \square v=1400MHz \Rightarrow N=128k [1.5 Gflops]
 - \square v=400MHz \Rightarrow N=2M [1.8 Gflops]
- DM=10 and δv = 128 MHz
 - \square v=1400MHz \Rightarrow N=8M [15.8 Gflops]
 - \square v=400MHz \Rightarrow N=256M [20 Gflops]

http://www.fftw.org/speed/CoreDuo-3.0GHz-icc/

Coherent Dedispersion - History

- 1971 0.125 MHz @ Arecibo
 - ☐ XDS Sigma 5 magnetic tape
 - □ 20% duty cycle for 3 minutes
- 1987 **1.5 MHz**
 - ☐ Reticon R5601 chip
 - □ real-time!

- 1998 16 MHz @ Parkes
 - □ S2, VHS tape
- 1999 **20 MHz** @ Parkes
 - □ CPSR, DLT tape
- 2002 **128 MHz**
 - ☐ CPSR2, high-speed disk
- 2007 1024 MHz
 - □ APSR, real-time

Coherent Dedispersion - Friday

100 MHz on one GPU

ATNF Parkes Swinburne Recorder

- Combination of FPGA and software
 - □ PDFB3 implements polyphase filterbank
 - □ 16 processing nodes receive sub-band as UDP stream
- Real-time and/or offline data reduction
 - □ record data to disk at 1.6 GB/s for 2.5 hours
- Remote control and monitoring
 - □ web-based interface

Parkes Digital Filterbank

- Designed/developed at ATNF
 - □ 2 x Compact Array Broad-band (CABB) board
 - □ up to 2048 channel polyphase filterbank
 - □ real-time RFI mitigation
- CABB = 2GHz correlator
 - ☐ modularity of FPGA design
 - □ hardware re-use

APSR Features

- Phase-coherent dispersion removal (up to 1024 MHz)
- Impulsive interference excision
 - □ RFI, lightning, etc.
- Single-pulse capability
 - □ with real-time calibration and/or giant pulse selection
- Fold multiple pulsars simultaneously
 - □ globular clusters, binary pulsar

Pulsar Surveys

- Computationally intensive search over:
 - □ period, P
 - □ dispersion measure, DM
 - □ acceleration, a
- Point at patch of sky and record:
 - □ sensitivity is a function of period and DM

Parkes Multibeam Surveys

- Discovered 850+ pulsars
 - □ Double pulsar
 - □ NS+NS and NS+WD binaries
 - ☐ Energetic and magnetar-like pulsars
 - ☐ Millisecond pulsars (for high-precision timing)
- 13 beams x 288 MHz (96 channels x 3 MHz)
- 250 microsecond, 1 bit/sample (624 kB/s)

Berkeley Parkes Swinburne Recorder

- Combination of FPGA and software:
 - □ 1024 channels, 64 us, 8bits x 2 poln from iBOB
 - □ decimated to 2 bits x total intensity (52 MB/s)
 - □ written to DLT S4 tapes (x2)
 - □ sent over 1Gb link to Swinburne
 - □ processed on supercomputer
- High Time Resolution Universe Survey

Lina Levin's PhD

iBOB

- Center for Astronomy Signal Processing and Electronics Research (CASPER) at Berkeley
- FPGA "gateware" libraries
- modular, hardware building blocks
- Latest design:
 - □ Reconfigurable Open Architecture Computing Hardware (ROACH)

Future: Transient Searches

- search for strong bursts as a function of DM
 - □ no search over period and acceleration
- real-time detection required to:
 - □ save raw data for more detailed analysis
 - □ trigger follow up at other wavelengths
- must differentiate b/w astronomical & terrestrial signals
- need wide field of view

Transient Sources

- Explosive Events
 - □ Gamma Ray Bursts, radio supernovae
- Stellar and Planetary Emission
 - □ Sun, Jupiter
- Compact Objects
 - ☐ Active Galactic Nuclei (AGN), micro-quasars
- Serendipity
 - □ LIGO coincidence, SETI

Wide Field of View

- Large Number Small Diameter (LNSD)
 - □ many small antennae
 - □ large field of view (all sky monitor)

- Focal Plane Arrays
 - ☐ fewer, mid-sized antennae
 - □ phased array at focus produces multiple beams

Tessellate the Primary Beam

Murchison Widefield Array

- 15-50 degree field of view
- 2.3 8.6 arcsec tied-array beam
- 120k 160k beams!
- How many tied array beams are possible?

Mega beamformer?

- Need: Frequency resolution (B=32MHz N_{FFT}=4096)
 - \square O(N_{FFT}) B/N_{FFT} N_{tel}N_{pol} = ~2 Tflops
- Need: IO
 - \square 512 Mb/s x N_{tel} = 256 Gb/s (Infiniband 40Gb exists)
- Need: Complex Multiply-ACcumulate
 - \square B x N_{tel}N_{pol} x 4 = 128 GigaCMACs
- Need: Memory Bandwidth
 - □ ~ N_{byte}[8] x CMAC ~ 1 TB/sec

per beam!!

Memory Bandwidth

Compute Device	GB/s
Intel Clovertown	~10
Intel Nehalem	~30
nVidia GPU	~100
Intel Larrabee	????

NEED: 1TB/s PER BEAM

Australian SKA Pathfinder

- Focal Plane Array on 36 antennae
 - □ each dish: 30 x 1 square degree field of view
- Single Digital Backend (SDB) demonstration
 - □ concept proposed and pursued by Tim Cornell et al.
 - □ beam formation, correlation, and imaging on supercomputer
 - □ compute: 2 Pflops
 - □ transfer: 2 Tb/s in

Summary

- Modern backends combine hardware and software elements:
 - ☐ Hardware (FPGA) provides more grunt
 - enables large problems to be divided
 - increasing modularity and re-use
 - □ Software (CPU/GPU) provides more flexibilty
 - enables experimentation with more complicated algorithms
 - increasing performance
- Existing systems have great potential for discovery
- Future systems look challenging now, but ...

