

Millimetre Observations, Techniques and Considerations

Max Voronkov ATNF Radio Astronomy School @ Parkes 23<sup>rd</sup> September 2009



#### Outline

- Capabilities of ATNF instruments in mm
- Difference between mm and cm observations
  - · Largely atmosphere
- Review of calibration
- Some practical aspects of mm observing and data reduction

Handy references (e.g. for more strict derivation):

- Kraus J.D., Radio Astronomy
- Talks by Dick Manchester and John Reynolds at this school
- Brooks K.J., Temperature scale and flux calibration, <a href="http://www.narrabri.atnf.csiro.au/mopra/TrainingDay08/Brooks\_calibration.pdf">http://www.narrabri.atnf.csiro.au/mopra/TrainingDay08/Brooks\_calibration.pdf</a>
- Condon J.J., Ransom S.M., Essential Radio Astronomy, http://www.cv.nrao.edu/course/astr534/ERA.shtml



## Australia Telescope at mm



#### CABB - Present mm capabilities

CABB wideband mode (mid Apr09 to mid Jul09)
- 8 GHz CABB range over which two 2-GHz bands can be positioned





More channels (16384) over each 2 GHz sub-band are technically feasible, but the timescale of implementation is uncertain at present



# CABB - Zoom modes (example: 1 MHz zoom)





#### CABB - Zoom modes

- The width of a filter bank channel is the width of each zoom window
  - Coarse resolution of the wide sub-band = bandwidth of 1 zoom window
  - Stitching is possible (seamless, if interleaved windows are used)
- Initially up to 4 zoom windows per each 2 GHz sub-band
  - Eventually up to 16 zooms per sub-band will be available
  - Each 2 GHz sub-band (and all its zooms) can have different resolution

| Resolution |      | Velocity Resolution |     |      | Velocity coverage |     |      |
|------------|------|---------------------|-----|------|-------------------|-----|------|
| Wide       | Zoom | 3mm                 | 7mm | 12mm | 3mm               | 7mm | 12mm |
| MHz        | kHz  | m/s                 |     |      | km/s              |     |      |
| 1          | 0.5  | 1.6                 | 3.8 | 7.1  | 3.1               | 7.5 | 14.3 |
| 4          | 2    | 6.3                 | 15  | 29   | 12.6              | 30  | 57   |
| 16         | 8    | 25                  | 60  | 114  | 51                | 120 | 229  |
| 64         | 32   | 101                 | 240 | 457  | 202               | 480 | 914  |



# Mopra - a complementary single dish

- Similar set of receivers (but can go up to 117 GHz)
- Wide-band spectrometer (UNSW-MOPS) available (for a few years by now)



#### Available modes:

- Broad-band mode continuous coverage of 8.3 GHz (0.25 MHz resolution = 0.8 km/s at 3mm)
- · Zoom mode

16 windows, 137.5 MHz each (0.03 MHz resolution = 0.1 km/s at 3mm)



# What is so special about mm?

- Atmosphere becomes important
  - Absorbs astronomical signal
  - Emits its own radiation (contribution to Tsys)
  - · Varies in time
  - Varies from one direction to another
  - Weather





#### Radiation transfer in the atmosphere

Tip: do not observe at mm below 30 deg of elevation



 $au_0$  zenith opacity

σ opacity in the direction of source

Homogeneous medium: opacity is proportional to the path:  $\tau = \int \kappa_v d\ell$ 

$$\tau = \tau_0 / \sin(Elevation)$$

n emi I

 $I_{below} = B_v(T)(1 - e^{-\tau}) + I_{above}e^{-\tau}$ emission
absorption

$$dI = \varepsilon_{v} d\ell - \kappa_{v} I d\ell$$

$$\frac{\mathcal{E}_v}{\kappa_v} = B_v(T)$$
 Plank function

Intensity is often expressed in terms of the temperature (via Plank function). At low frequencies:  $I \propto T$ 

$$T_{below} = T_{atm}(1 - e^{-\tau}) + T_{above}e^{-\tau}$$



#### Atmospheric transmission windows



- This plot shows the model of atmospheric opacity at Zenith (standard atmosphere and 20% humidity)
- Liebe's model: Radio Science, 1985, 20, 1069
- Dry component (i.e. oxygen)
- Wet component (water vapour), scale height of 1540m
- We can observe through 7mm and 3mm windows



### Atmosphere and interferometers



- For interferometers like ATCA atmospheric opacity is half of the evil
- Atmosphere causes phase variations as well (the effect is worse for extended arrays)



### What is so special about mm?

- Atmosphere becomes important
  - · Absorbs astronomical signal
  - Emits its own radiation (contribution to Tsys)
  - Vary in time
  - Vary from one direction to another
  - · Weather
- Antenna performance becomes critical
  - Pointing
  - Focus/surface accuracy
  - Small beam means a small FOV (i.e. often need mapping)
- Very accurate calibration is difficult
  - Many small factors affect the calibration
  - Uncertainty is larger than for observations at cm-wavelengths



### Raw single-dish spectrum



- Uncalibrated response to a spectral line source
- The raw units are usually scaled by the online system to match the Tsys
- Unscaled example is shown here as an extreme case of uncalibrated data

T<sub>sys</sub> is usually referenced to above the atmosphere



#### Raw on and off spectra



- Observe a reference position close to the target
- This method is known as position switching

$$T_a = \frac{ON - OFF}{OFF} T_{sys}$$
 Quotient



#### Position switching, baselining



- · Position switching gives good baselines, but
- Require twice as much observing time
- May be difficult for CO or HI in the Galaxy
- Systematics due to slightly different atmosphere for ON and OFF positions





### Frequency switching



- Frequency switching gives horrible baselines, especially if the source has a strong continuum emission and the telescope has a partially blocked aperture
- Does not allow to use all bandwidth
- Is not very suitable for broad-band instruments such as Mopra
- But it doesn't impose time penalty



#### Position switching variations: MX-quotient

If you have two or more beams, loosing time is avoidable!



$$T_{a,1} = \frac{ON_1 - OFF_1}{OFF_1} T_{sys,1}$$
 average with

$$T_{a,2} = \frac{ON_2 - OFF_2}{OFF_2} T_{sys,2}$$

- Take median of all OFF positions if more than two beams are available
- This mode is used at Parkes with e.g. the methanol multibeam receiver
- · There is a time overhead to change pointing/set up integration
- Not ideal for very short integrations (<1min per beam for Parkes)</li>



#### Position switching variations: maps

- High frequency (Mopra)
  - Off-map reference position is observed once for each scan or two scans
- Low frequency and large maps (Parkes)
  - Reference spectrum is a median for the whole scan

livedata takes care of this!



Observer needs only to create an appropriate observing schedule!



# How to measure T<sub>sys</sub>?

- Noise diode
  - Does not take the atmosphere into account
  - But it is good enough at low frequencies



$$P_{ON} \propto T_{diode} + T_{rec} + T_{atm} (1 - e^{-\tau}) + \cdots$$

$$P_{OFF} \propto T_{sys} e^{-\tau} \propto T_{rec} + T_{atm} (1-e^{-\tau}) + \cdots$$

Above atmosphere value!

$$\frac{T_{sys}e^{-\tau}}{T_{diode}} = \frac{P_{OFF}}{P_{ON} - P_{OFF}}$$

Get T<sub>sys</sub> if T<sub>diode</sub> and opacity are known

Use hot and cold load to measure T<sub>diode</sub> and T<sub>rec</sub>



# How to measure T<sub>sys</sub>?

#### Paddle

· Without the atmosphere it would be a poor man's noise diode



$$\begin{split} P_{paddle} &\propto T_{paddle} + T_{rec} \\ P_{sky} &\propto T_{sys} e^{-\tau} \propto T_{rec} + T_{atm} (1 - e^{-\tau}) + \ddots \end{split}$$

Above atmosphere value!

- Usual assumption:  $T_{paddle} = T_{atm}$
- Hot and cold load method is more precise and gives opacity estimate

$$T_{sys} = \frac{P_{sky}}{P_{paddle} - P_{sky}} \left[ (T_{paddle} - T_{atm})e^{\tau} + T_{atm} \right]$$

 $\bullet$  Noise diode allows to track  $\mathsf{T}_{\mathsf{sys}}$  variations caused by opacity:

$$\frac{T_{sys}e^{-\tau}}{T_{diode}} = \frac{P_{OFF}}{P_{ON} - P_{OFF}}$$



#### SKYDIP - a way to measure opacity

$$P_{ON} \propto T_{diode} + T_{rec} + T_{atm} (1 - e^{-\tau}) + \cdots$$

$$P_{OFF} \propto T_{sys} e^{-\tau} \propto T_{rec} + T_{atm} (1 - e^{-\tau}) + \cdots$$

Remember math we had for the noise diode...

Above atmosphere value!

$$\frac{P_{OFF}}{P_{ON} - P_{OFF}} = \frac{T_{rec} + T_{atm}(1 - e^{-\tau}) + \cdots}{T_{diode}}$$

Gated Total Power
Synchronously
Detected Output

$$\tau = \tau_0 / \sin(Elevation)$$

Linear dependence on 1/sin(elevation) for small optical depths



### Correction for efficiency

Paddle or noise diode do not allow us to account for all possible losses!

e.g., rearward scattering, spillover, blockage, focusing

$$T_a^* = \frac{T_a}{\eta}$$
 Corrected antenna temperature

- Elevation-dependent trends can be described as the gain-elevation curve
- It is often convenient to scale T<sub>sys</sub> (and data) up in the online software
- Not totally independent from the main-beam efficiency (next slide)
- Moon as the natural paddle?

T<sub>a</sub> is still an antenna-dependent quantity!



# Main beam brightness temperature



 $T_{mb}$  Accounts for the fraction of the power going into the main beam

$$\eta_{\mathit{mb}} = \frac{\int\limits_{\Omega_{\mathit{mb}}} P(\Omega) d\Omega}{\int\limits_{A\pi} P(\Omega) d\Omega} \ \ \text{Main beam efficiency}$$

Normalized power pattern

$$T_{mb} = \frac{T_a^*}{\eta_{mb}}$$

Main beam brightness temperature of the same compact source measured with different instruments is expected to be the same!



### Planets as standard sources

| Planet  | ATCA                  | Mopra            |  |  |  |
|---------|-----------------------|------------------|--|--|--|
| Mercury | Too close to the Sun  |                  |  |  |  |
| Venus   |                       |                  |  |  |  |
| Mars    | OK, but complex model | Too faint        |  |  |  |
| Jupiter | Too big               | OK, although big |  |  |  |
| Saturn  | Has rings             |                  |  |  |  |
| Uranus  | Main calibrator at mm | Too faint        |  |  |  |
| Neptune | Feasible              | Too faint        |  |  |  |



#### Practical aspects of mm observing

- Do pointing solution from time to time
  - · Once an hour or if moving to a different part of the sky
  - Pointing calibrator within 15 degrees from your target
  - SiO masers (at 7mm and 3mm) and H<sub>2</sub>O masers at 12mm for Mopra
  - Continuum sources brighter than 0.5-1 Jy for ATCA
  - It may be acceptable for some 12mm science to use global pointing
- Do paddle calibration regularly if observing at 3mm
  - Once per 20 min or if moving to a different part of the sky
- ATCA: observe flux calibrator
  - 1934-638 for cm-wavelengths, 12mm and now 7mm as well
  - Uranus or Mars at 3mm and 7mm
  - Aim at observing close in time and elevation with your target
- Mopra: it wouldn't hurt to observe a standard source (Orion/M17) and/or Jupiter
  - But in general Mopra is not yet a well calibrated instrument
  - For 3mm look at Ladd et al., 2005, PASA, 22, 62



### Mopra at 3mm

Braze Size, Shape and Efficiencies for the AENF Moon Radio Trioscope at 86-115 GHz



Figure 7: Standard sports towards MIT-SW and Orion-KL. The following coordinates were used in all observations: Orion-KL. – 05°16"14.9", – 05°22'20.6" (20000.0), and MIT-SW – 18°20"23.1", – 16°17'79.2" (20000.0). The left y-axis displays T<sub>A</sub><sup>\*</sup> and the right y-axis T<sub>A</sub>, connected for the man beam efficiency at the frequency of the line.

#### Ladd et al., 2005, PASA, 22, 62

- Standard spectra of Orion and M17 in both Ta\* and Tmb scales
- Efficiencies at 3mm
- Beam maps

 Efforts are being made to extend this work to other bands



### practical aspects of calibration in asap

- scantable.opacity(tau0)
  - Multiplies data and Tsys by exp(τ₀/sin(El))
  - Required if Tsys is not corrected for atmosphere (12mm, 7mm)
  - User has to supply zenith opacity (tau0)
  - Miriad's task opplt can help to make an educated guess
  - Scripting required to account for time variations of tau0
- scantable.scale(factor,tsys=True)
  - · Just scaling of data and optionally (if tsys is True) Tsys
  - Handy if you want a T<sub>mb</sub> scale instead of T<sub>a</sub>\*
- scantable.gain\_el(poly=None, filename=",method='linear')
  - · Divides the data and Tsys by the gain (efficiency) factor

$$T_a^* = \frac{T_a}{\eta}$$

- User can give polynomial coefficients (poly) or
- External ascii table to be interpolated with the given method (filename) or
- Rely on built-in models (for some instruments)



#### Summary

- ATCA and Mopra have receivers for 12mm, 7mm and 3mm with broadband backends
- Parkes can be used for 12mm observations of weaker sources
- Calibration is largely about understanding of your instrument
  - · Many small factors, some of which are not well studied
  - Stable calibrators are continuum sources. Therefore it is easier to calibrate an interferometer than a single dish to a high accuracy
- Build an extra redundancy into your project
  - Observe known sources for cross-check
  - Calibrate more often than you need to achieve the science goal
- Try to observe in an appropriate season
  - · i.e. no daytime observing in summer at 3mm



#### **Australia Telescope National Facility**

Max Voronkov Software Scientist (ASKAP)

Phone: 02 9372 4427

Email: maxim.voronkov at csiro.au

Web: http://www.narrabri.atnf.csiro.au/~vor010

# Thank you

**Contact Us** 

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

