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« Aims of source detection

« What is a source?

« Detections and noise

 How you measure the noise
« How you deal with the noise

« How you find sources
« What do you do with sources once you find them

« Software options you can use
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Where's the star?

,,,,, E_Hill (2005)
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What do we mean by “source detection™?

" « Location and cataloguing of objects of interest within your data
11111 « Find all objects brighter than X in your image.

] « Find all galaxies brighter than Y extending over £ km/s in your
|I"|I|I|I|I HI EUbE

(1] « Find all emission line peaks with S/N > Q

I « Fit 2D Gaussian to each continuum source and record shape &
|III||I|III flux
{111 » Fit Gaussian components to each emission line

« Measure shape, extent and flux of extended emission in a
11111 continuum map
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i Detection and Noise
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What is Source Detection?

' - Key question:

Is this pixel value part of the background
noise, or is it a “source”?
:.:u:u:.:.::, « Resolve via hypothesis testing
'''''''''''''''' * Hy: Pixel value is due to the background noise
II * H,: Pixel value is due to something else
'''''' | - Use statistical testing to reject (or not) H,
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Noise and source detection

« Background pixel values randomly distributed with a particular
probability density function
* Gaussian (Normal) distribution, N(u,a=):

.I 'I 'I .I |I .I II " B %
f(aln, 02) = = exp | =L

« Probability of a given pixel value governed by this function
« Use to test hypotheses.

« Example:
* Assume the standard normal distribution, N(0,1)
* Probability of x=3.2 is

Joaf(@)dz=1— [°7 2=e*/2dz =1-0.9993 =7 x 10~

« Thereis a 1in 1429 chance that a 3.20 "detection” is simply
noise

* This will occur about 11.5 times in a 16K-channel spectrum, or
about 734 times in a 1024x1024 pixel image.
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What do Gaussian errors mean?

i no Single-tail # detections per |# detections per
Il probability ASKAP image | ASKAP cube
(4096x4096) (4096x4096X
Il 16384)
3 1.35€-3 22649 371 million
5 2.865e-7 4.5 78.7 thousand
6 9.87e-10 0.0166 (1 in 60) |271
| 7 |1.28e-12 2.1e-5 0.35
10 7.62e-24 Small! 2.e-12
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Errors, Reliability and Completeness

« No source detector will be perfect in the presence of noise

« There will always be errors, due to misidentified or missed
sources

 False detection
* False-detection rate = prob(data > S;,, | no source)

« Reliability
* Fraction of your sample that are real sources
+ 1-FDR

« Completeness

* Chance that a real source is measured to be above the flux limit
* Prob(data > 5, | source)
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What is the noise level?

- Key to implementing these sort of statistical tests is
parametrising the noise:

* How is the noise distributed?
« What is the standard deviation and mean?

« But how do we measure the noise properties?

A SEF}EII"EHE measurements

* From the data set we are searching
« Noise is the background signal away from sources of interest

* Construct a noise map
« Important for imaging, as noise may vary with position
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Robust techniques for noise estimation

« Suppose we want to estimate the noise from our data

« If there are bright pixels from sources present, this will bias the
calculation of the mean and standard deviation:

= N N s
T = %Zﬂ:lm 52: %Enzl(m_j‘:)z

- Would like to not include those pixels, but that is part of the
source-finding problem!

« Robust methods are those that are not affected by strong
outliers:
* Median rather than mean
* Median absolute deviation from the median instead of the RMS.
* Inter-quartile and inter-hexile ranges
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Robust techniques

« Median = mid point of the ordered data set
« Take set of data points

« Rank them by value
« Take middle point, or average of two middle points if even number

» Median Absolute Deviation from Median:
* Find median
« Find absolute value of the difference of each data point and median
« Rank these values then take middle point
« |f assume Normal statistics, convert to standard deviation by

s = m/0.6744888

 Inter-hexile range
« Hexile: divide a ranked list into six equal groupings
« Inter-hexile range is the difference between the first and fifth hexiles

« Semi-interhexile range is very close to standard deviation for a Normal
distribution
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Complications with noise

« Noise will not, in general, be nicely Normally distributed
« Central Limit Theorem will provide a good Normal distribution in
most cases, although beware of the tails!
« However, other influences will confuse things:
* Interference - localised in frequency or space

+ Sidelobes from bright sources
* Artifacts from bright sources (e.g. CLEANiIng residuals)

* T, variations across the field of view
« Have to be careful about extrapolating noise estimates from
one part of an image/spectrum to other parts.
« One solution can be to make a "noise map”
« Will lead to a varying detection threshold across your data
* Affects completeness etc of the final catalogue

CHIRD, ATMF Redie Astronomy School, Septambsar 2005



::::: Enhancing detectability
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Circumventing the noise

« We can use the fact that the noise has different properties to
the sources to try and reduce its effect

- Key observation: the scale of noise fluctuations is often
different to the scale of the sources in your data

« Spectral-lines: HI galaxies many channels wide, but channel noise
largely independent

« Use pre-processing to enhance structure on the scale of your
sources and suppress the random signal
* Smoothing
* Wavelet reconstruction
« Process your raw data and then run your source detection
algorithm over the processed data
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Simple smoothing

i1« Average neighbouring pixels together in some way by using
11| some sort of filter

* Can use some form of weighting: e.g. Hanning smoothing

« Choose some width/scale, and noise on smaller scales will be
smoothed out.

- |deally, want Source scale > Filter scale > Noise scale

« Optimal approach is matched filtering, where your sources

have a particular scale size, and you match the filter to that
scale

* Need to know this a priori which is not always possible

* Needs to be a single scale, or it loses effectiveness

- Effect on noise: standard deviation of background will reduce
according to the filter
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Filtering and noise

+ Define filter by discrete components {w;},j € [1,2n + 1]

« Have input spectrum {Fi}af‘ € [1: N]

]| e / 2n+1

i + Calculate new spectrum by filtering: £} = Zj:u W;Figj—n
'''''''' * |f the noise on all points in the original spectrum has the same
1] standard deviation o; = 0

« Then the noise in the filtered spectrum will scale as:

22
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Wavelet reconstruction

Nl = You may not know the typical source scale a priori or there may
not be one unique scale

{{{{ = Itis possible to filter at a range of scales and use that
information to reconstruct a noise-free spectrum/image

* Highlight a logarithmically-increasing range of scales to cover the
full range of possibilities

« One such technique is the a trous wavelet reconstruction
algorithm, which can be used to remove unwanted noise.

CHIRD, ATMF Radio Astronomy School, Saplembar 2005 T
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A trous algorithm

| .I.II » Start with a spectrum (the input data): S° = {S7}.Vi € [L, N]
"""Iu' * Also have a filter, used to smooth the data: F! ={F/},vj € 1, f]
/ll{[ = Convolve the spectrum with the filter to produce first smoothed
(11| array S!={s!}=8%@ F!
'III'."" « Subtract the coefficients from the spectrum to produce the
|| wavelet array Wl = §? - !
* Apply some threshold to the wavelet array, so that only pixels
i with signal are kept. 4, _ { wi Wi > T

i 0 Wi < T
1] * Double the spacing between the filter coefficients
' « Convolve the smoothed array with the filter
i * Produce the wavelet array and apply threshold.
1] « Continue until size of filter ~ size of spectrum
'  Reconstruction: add thresholded wavelet arrays, plus final
|| smoothed spectrum. R, = S Wk + sn
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A trous example
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" A trous example
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Baseline/background variations

« All examples shown here have mean(noise) =0
« This need not be the case, however:
i « Baseline ripple in single-dish spectra
]| | * Solar interference
« Errors in preconditioning

« Need to accurately account for the changing baseline before
searching for sources

« Variety of ways to estimate the baseline:

+ Polynomial fitting

111 * Median filtering

« A trous reconstruction, keeping largest scale(s).

O
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Baseline example
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Source Extraction
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How is source detection performed?

» Move from image segmentation to object detection

« Emphasis here on automated detection of objects
« Automated operation necessary for modern data sets
« Provides objectivity and reproducibility of results, and easily scalable
« Needs to be well designed

» Detected pixels are those for which the null hypothesis is rejected.
,,,,,,, » An object is a set of detected pixels that are connected in some way.

+ Connected can be directly touching or within some separation
threshold

» 1D is relatively straightforward
» Look for connected pixels above the threshold

» Various algorithms for joining them up
« Can scan along spectrum, starting a new object at a detected pixel and
stopping it at a non-detected one.

« Can start at the maximum point and grow out to non-detected pixels and
continue to next maximum not part of an object.

G)
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2D source detection

« Two dimensions means an extra degree of freedom in which to
connect pixels
« Still well behaved, with two important features:
* Objects do not overlap within a given row of pixels

* Objects are well-nested
« Consider a row from an image. If a section of Object B lies between
two sections of Object A, then all of Object B lies between those two

sections.
« Objects cannot cross each other and remain distinct

« This allows simple raster-scanning algorithms can be applied
that examine each pixel in the image once only to pick out all

connected objects.
* Lutz (1980) is a good example: used in Duchamp & SExtractor
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3D source detection

« The extra dimension breaks the simple arrangement seen in 2D
« The well-nested criterion no longer applies
* Objects can be intertwined while still remaining distinct
* Makes a simple raster-scanning algorithm not possible
« Need to use a two-stage approach
« Search individual 2D channels or 1D spectra separately
* Have a merging algorithm to combine objects that are connected
* Needs to be carefully designed to not be too time-intensive
- Use knowledge about your dataset
* Are most of the sources unresolved?
* Is the emission extended & diffuse?

CSIR0. ATNF Radic Astronomy School, Seplembar 2009 A



Spurious sources and their rejection

IIIIII - Automatic source detection is great, but you need to

understand your data

I « Some apparent sources that will be picked up will not be the

sort that you want

* Interference often shows up spectrally as narrow bright spikes

* Gridded data may show bright spatial pixels due to RFI in certain

| scans

* Grating rings & spikes in interferometric data can resemble sources

I « Basic requirements such as minimum number of pixels or
channels can exclude a large fraction of RFI “sources’.

- Awareness of where your sources are appearing is crucial to
""" understanding the results of source detection.
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Post-detection Analysis

« What do you want to do with your sources once you ve found
them?

* Measure source parameters
« Location, size, shape, flux, ...
* Fit standard functions to each source

« 1D Gaussian profile (or other type of function) in frequency/velocity
space
« 2D (Gaussian spatial profile

+ Standard approach for large continuum surveys: NVSS (Condon+ 1998),
FIRST (Becker+ 1993), SUMSS (Mauch+ 2003)

« 3D sources: create moment maps
« 0 moment: integrated flux
« 1t moment: mean velocity
« 2nd moment: velocity dispersion

CSIR0. ATNF Radic Astronomy School, Seplembar 2009 A



Source detection tools: 3D

« Duchamp
« An ATNF development (by me :)
» http:/fwww atnf.csiro. au/computing/software/duchamp
Designed for sparse 3D spectral-line source detection

+ Isolated sources embedded in noise
= HI surveys a good example

Provides wavelet reconstruction & smoothing options

Good graphical output

Continuing to be maintained and used in ASKAP development
« Available for download. Runs as a standalone package.

» Clumpfind
« Williams et al (1994), ApJ 428, 693

Designed with molecular-line surveys in mind

Decomposes clouds into 3D clumps via contouring
* Finds peaks in the 3D contour map and follows them down to lower levels

Widely used in the literature
Available as part of miriad. also as stand-alone package.
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Source Detection tools: 2D

« Many data-reduction packages will have a source-extraction

tool
« Sfind in miriad, SAD in AIPS

- SExtractor developed for optical data, considered state-of-the-
art for 2D source extraction
* Able to be used on radio data

» Duchamp able to examine 2D data
+ Source extraction algorithms being used for ASKAP development

« These all have their pros & cons
* Depends on starting assumptions about sources
* Treatment of sources varies
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= Journal paper to be submitted shortly!
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