Radio Telescope Receivers

Alex Dunning

25th September 2017
“A radio receiver is an electronic device that receives radio waves and converts the information carried by them to a usable form”

Wikipedia
Ours look more like this

- Captures the signal reflected from the antenna
- Determines the beam shape
- Amplifies the signal
- Conditions the signal for digitisation

Parkes 10/40cm Receiver
On the outside...

- Feed Horns
- Vacuum Dewar
- Control and Monitoring electronics
On the inside...
Detour: Reciprocity

Forward
\[V_B = S_{BA} V_A \]

Reverse
\[V_A = S_{AB} V_B \]

Reciprocal
\[S_{BA} = S_{AB} \]
Corrugated

Smooth Walled

E-Field At Feed mouth

X and Y Feed Patterns

Gain

Theta [deg]
Receiver Systems for Radio Astronomy

Signal

Feed

Coupler

Noise source

Noise coupled in through small holes

7mm waveguide coupler

Noise coupled in through vane

21cm waveguide coupler

12mm noise source
Receiver Systems for Radio Astronomy | Alex Dunning

Signal

Feed

Coupler

Ortho-mode Transducer

Pol A

Pol B

Noise source

A output

B output

Input
Separating the Polarisations: The OMT
Noiseless Amplifier

\[P_{\text{output}} \propto G\text{ain} \Delta f \]

Low Noise Amplifier

\[P_{\text{output}} = G\text{ain} \Delta f k_B T_{\text{resistor}} \]

Noiseless Termination

Black body Termination

\[T_{\text{equivalent}} = \frac{P_{\text{output}}}{G\text{ain} \Delta f k_B} \]
\[T_{\text{system}} = T_1 + \frac{T_2}{\text{Gain}_{\text{LNA}}} + \frac{T_3}{\text{Gain}_{\text{LNA}} \times G_2} + \frac{T_4}{\text{Gain}_{\text{LNA}} \times G_2 \times G_3} \]
10Jy radio source \rightarrow \sim1K additional noise

Your hand \rightarrow \sim300K additional noise

Mobile Phone at 1 km \rightarrow \sim1 \times 10^{11} K !! (in primary beam)
Noise contributions of a typical receiver

<table>
<thead>
<tr>
<th>Part</th>
<th>Room Temperature</th>
<th>Cryogenic</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky + CMB (T_{sky})</td>
<td>6K</td>
<td>6K</td>
<td>1</td>
</tr>
<tr>
<td>Spillover (T_{spill})</td>
<td>3K</td>
<td>3K</td>
<td>1</td>
</tr>
<tr>
<td>Feed + OMT</td>
<td>10K</td>
<td>2K</td>
<td>5</td>
</tr>
<tr>
<td>LNA (T_{LNA})</td>
<td>35K</td>
<td>5K</td>
<td>7</td>
</tr>
<tr>
<td>Rest of the System</td>
<td>1K</td>
<td>1K</td>
<td>1</td>
</tr>
<tr>
<td>Total (T_{sys})</td>
<td>55K</td>
<td>17K</td>
<td>~3</td>
</tr>
</tbody>
</table>
Refrigerator in the Parkes 12mm receiver

- 15K section
- 70K section
- Cold finger

Helium Refrigerator

Helium Compressor

Helium Lines
The RF System

Contains:
- More amplification
- Band defining filters
- Frequency conversion
- Level adjustment
- Signal detection
- Band shaping
$\cos(\omega_1 t)\cos(\omega_2 t) = \frac{1}{2}[\cos((\omega_1 + \omega_2)t) + \cos((\omega_1 - \omega_2)t)]$
Mixer (Multiplier)

\[\cos(\omega_1 t)\cos(\omega_2 t) = \frac{1}{2}[\cos((\omega_1 + \omega_2)t) + \cos((\omega_1 - \omega_2)t)]\]
Mixer (Multiplier)

Signal 1 → Local Oscillator

\[\cos(\omega_1 t) \cos(\omega_{LO} t) \rightarrow \frac{1}{2} \cos[(\omega_1 - \omega_{LO})t] \]

Upper Side Band (USB)

Power

Frequency

\(f_{LO} \)

\(\Delta f \)
Mixer (Multiplier)

\[
\cos(\omega_1 t) \cos(\omega_{LO} t) \rightarrow \frac{1}{2} \cos[(\omega_{LO} - \omega_1) t]
\]

Local Oscillator

Signal 1

Lower Side Band (LSB)
Signal 1

Band pass filter

Mixer (Multiplier)

Local Oscillator

\[\Delta f \]

\[f_{lo} \]

\[\Delta f \]

\[\text{Power} \]

\[\text{Frequency} \]
The modern radio telescope
0.000001 megapixels
Digital beamformer

Weighted (complex) sum of inputs
Receiver Systems for Radio Astronomy | Alex Dunning
Thank you

CSIRO Astronomy and Space Science
Alex Dunning

t +61 2 9372 4346
e alex.dunning@csiro.au
w www.csiro.au/cass