ASAP advanced tutorial

Main goal: To understand how to handle the data manually by building a quotient
without using mx_quotient

TODO:

1
2
3.
4
5

. Load the data from RPFITS file

. Play with various methods to get access to the data

Run the reduction script using the built-in quotient

. Copy the template script doing the quotient
. Modify makeQuotient method to replicate the functionality of the

built-in mx_quotient

Prerequisite: Data file and a general reduction script:

Data file:
Script 1:
Script 2:

Script 3:

2009-04-02_2240_ MMB-MX-11.9-0.13333.rpf
tutorial.py general reduction script

systemquotient.py script doing built-in quotient (to be copied and
modified)

userquotient.py the result (you’re not supposed to look into it
unless desperate)

Help: Use help method in asap to get information about parameters, etc

Some instructions

To run the script

ASAP> run tutorial.py

Copy systemquotient.py to a new name, change the import statement at the
top of tutorial.py to load your file instead of the systemquotient.py.

from myquotient import *

Now your version of makeQuotient will be called from tutorial.py.
Use the following to load the data into a scan table called sc

ASAP> sc=

scantable(’2009-04-02_2240_MMB-MX-11.9-0.13333.rpf’)



Inspect the content.
ASAP> sc.summary ()

The file contains 7 scans. Each scan corresponds to observations of a source
with a different beam of a 7-beam receiver. We want to use the median
spectrum from all other scans as a reference when constructing the quotient

using the formula
Result = T,p¢ % (On/Off — 1),

where T, is the system temperature measured during the reference scan, On
is the signal spectrum, O f f is the reference spectrum. We want to construct
Result for each individual beam (out of 7 beams available) and average all
these spectra together.

To do the selection

ASAP> sel=sc.get_selection()
ASAP> sel.set_beams(0)

ASAP> sel.set_scans(0)

ASAP> sel.set_polarisations(0)
ASAP> sc.set_selection(sel)
ASAP> selected_sc = sc.copy()
ASAP> selected_sc.summary ()

To average or compute the median use one of

ASAP> ref.average_time(weight=’median’)
ASAP> scans.average_time()

To merge the scans together (i.e. individual quotients for each beam) build
a python list first and then use merge and average_time

res=[]
for b in range(7):

res.append (myFunctionReturningAScanTable (beam))
averaged_scantable = average_time(merge(res))

Note that merge will fail if the list has only 1 element. An if-statement may
be necessary

To scale the scantable with the constant factor use



scan.scale(factor,tsys=False, insitu=True)
To add a constant use
scan.add(constant_to_add, insitu=True)

To get the tsys use

scan.get_tsys()

Note that some selection of data is usually necessary. Otherwise get_tsys()
returns too many numbers
To divide two spectra simply divide one scan table to another

quotient = signal / ref



