Probing the Origin of Planetary Systems John Carpenter (Caltech)

Andrea Isella • Luca Ricci • Laura Perez

Disks to Planets

Silhouette disks in Orion

McCaughrean \& O'Dell 1995

Planets around HR 8799

Marois et al. (2011)

What is the mass distribution in the disk?
Where in the disk do planets form?
When do planets form?

- Observe the location of the gas and dust

Why (sub-)millimeter?

Ratzka et al. 2007

Why ALMA? Because resolution is Critical

CARMA observations @ 1.3 mm

$0.8^{\prime \prime}$, or 110 AU at 140 pc

Why ALMA? Because resolution is critical

CARMA observations @ 1.3 mm

ALMA will provide angular resolution down to $0.01^{\prime \prime}$, or $1.5 \mathrm{AU} @ 140$ pc

Dynamical Signatures of Planets

Embedded planets create gaps in disks

Wolf et al. (2007)

LkCa 15: "Transition" Disk

Signatures of planets in circumstellar disks

Extending the observations to fainter disks

Array	Noise (mJy/beam) $(1 \mathrm{hr} @ 230 \mathrm{GHz})$
ALMA (30 antennas)	0.02
CARMA	$0.8(x 40)$
PdBI	$0.4(x 20)$
SMA	$1.5(x 75)$

Andrews et al. (2011)

Large cavities (>15AU in radius) are quite common in mm bright disks but are rare/not observed in fainter disks. Is this result only an effect of the observational bias (i.e. limited sensitivity on the extended structures)?

From sub-micron dust grains to planets

Meter-size barrier @ 1 AU
Meter-size barrier

From sub-micron dust grains to planets

MODEL PREDICTION

Birnstiel et al. (2010)

From sub-micron dust grains to planets

CARMA observations

Isella et al. (2010a)

From sub-micron dust grains to planets

Model
Anticipated

ALMA 3 mm and EVLA 7 mm

Evolution of Dust Mass

- Based on infrared observations
- Infrared emission is optically thick
- Traces inner disk (< 1 AU)
- Submillimeter observations trace the dust mass

Hernandez et al. (2008)

Evolution of Dust Mass

- Lack of massive disks after
~ 2 Myr (?)
- ALMA
- > 10x more sensitivity to dust continuum
- Trace gas content with CO

Summay: Disks with ALMA

- Search for gaps/asymmetries in disks
- Trace evolution in grain growth and disk mass
- many other topics
- disk chemistry
- turbulence
- disk mass vs stellar mass

