Characterizing Low-Mass Cores in Nearby Molecular Clouds

Scott Schnee (NRAO)

Australian ALMA Community Workshop February 7, 2012

Collaborators

- James Di Francesco
- Melissa Enoch
- Rachel Friesen
- Alyssa Goodman
- Doug Johnstone
- Stella Offner
- Sarah Sadavoy
- Lisa Wei

Related Questions

- 1. At what stage during star formation does fragmentation begin?
- 2. How smooth is the mass distribution within starless cores?
- 3. How can one find deeply embedded protostars?

Samples

- 1. 11 of the brightest (at 1mm) starless cores in Perseus molecular cloud
 - Starless status based on Spitzer NIR-MIR data
 - Chosen from Enoch et al. (2006; 2008) Bolocam
 1.1mm survey of Perseus
 - Observed with CARMA D&E array + SZA
 - 3mm continuum
 - Follow-up observations with CARMA, SMA, Spitzer
 - Spectral line, 70 μm continuum, 1.3mm continuum

Perbo58 as a Protostar

Perbo45 as a Protostar

Color scale – VLSR of SiO (2-1) emission

Red contour: 3mm continuum

> Black contours: 850 micron SCUBA map

Perbo45 as a Protostar

Samples

- 2. 5 most Jeans unstable starless cores in Perseus and Ophiuchus
 - Starless status based on Spitzer NIR-MIR data
 - 1.3mm continuum, ¹²CO (2-1), ¹³CO (2-1), C¹⁸O (2-1), N₂D⁺ (3-2)
 - SMA subcompact observations
 - Chosen from Sadavoy et al. (2010)

J033217 as a Protostar

Color contours at 3, 6, ..., 21 K km/s

(Schnee et al. in prep)

Conclusions from Continuum Survey

- Of the 11 brightest "starless" cores in Perseus
 - 2/11 single-peak continuum detections
 - Both detections are protostellar
- Of 5 most Jeans unstable "starless" cores in Ophiuchus and Perseus
 - 1/5 detection rate
 - Protostellar source

Conclusions from Continuum Survey

- The majority of starless cores have no observational evidence of sub-structure or fragmentation
- Estimate that 5-20% of "starless" cores in Perseus are actually protostars

~100 starless cores and 50 protostars in Perseus

• *Spitzer* observations alone are not enough to determine if a core is starless

Simulations of Turbulent Fragmentation in Starless Cores

Simulated CARMA D-array observations

(Offner, Capodilupo, Schnee, & Goodman 2011)

Simulations of Turbulent Fragmentation in Starless Cores

Simulated ALMA Full Science + ACA observations

(Offner, Capodilupo, Schnee, & Goodman 2011)

Final Thoughts

- The observational data do not yet support the theory that fragmentation begins in the starless stage
- Turbulent fragmentation theory suggests that ALMA, combining the main (12m) array with the ACA (7m & total power), can detect fragmentation in starless cores
- ALMA will surely find many low-luminosity protostars in the process

The End

Thank you for your time!

CARMA & SZA 3mm Continuum

Perbo45

Perbo58

(Schnee et al. 2010)

3mm-derived Properties of Starless Cores

Name	$\begin{array}{c} {\rm RA \ offset^1} \\ ('') \end{array}$	Dec offset ¹ $('')$	Peak Flux ² (mJy/beam)	Total Flux ² (mJy)	$\frac{\mathrm{Axes}^3}{('')}$	${\theta_{PA}}^3$ (degrees)	${ m Mass}^4$ (${ m M}_{\odot}$)	$ m density (cm^{-3})$
Perbo11 Perbo13 Perbo14 Perbo44					14 0		<0.11 <0.29 <0.20 <0.14	1 1 - 107
Perbo45° Perbo50 Perbo51	-10.3 ± 0.5	8.8 ± 0.7	2.4 ± 0.3	11 ± 0.5	14×9	-14	0.8 < 0.16 < 0.62	$1.1 \times 10^{\circ}$
Perbo58 Perbo74 Perbo105 Perbo107	-4.3 ± 0.8	-1.1 ± 0.9	2.0 ± 0.3	33 ± 1	26×18	35	2.4 < 0.07 < 0.20 < 0.24	4.5×10^6

- 1. Offset from (0,0) position given in Enoch et al. (2006)
- 2. Derived from Gaussian fit to flux distribution
- 3. Deconvolved using the synthesized beam
- 4. For non-detections, 3σ upper limits to a point source are given
- 5. Does not include SZA data, so some 3mm emission is resolved out

Perbo58 as a FHSC?

Wavelength	Flux	σ (Flux)	Aperture	Notes
(µm)	(mJy)	(mJy)	Diameter (")	
4.5	0.024	0.07	2.2	Upper limit; Spitzer (c2d)
24	0.88	0.24	7	Spitzer (c2d)
70	65	6	17	Spitzer; this work
160	2870	1600	40	Spitzer (c2d)
350	6100	1200	40	SHARC II; M. M. Dunham et al. 2010, in preparation
850	920	200	18	SCUBA; Hatchell et al. (2005)
1100	330	30	40	Bolocam; Enoch et al. (2006)
2930	13	6	15	CARMA; Schnee et al. (2010)

Table 1 Observed SED of Per-Bolo 58

(Enoch et al. 2010)

1mm-derived Properties of Starless Cores

Name	R.A.	Decl.	Peak Flux	Total Flux	Total Mass	FWHM ^a	Density ^b
	(J2000)	(J2000)	$(mJy beam^{-1})$	(Jy)	(M_{\odot})	(″)	(10^5 cm^{-3})
Perbo11	03:25:46.0	+30:44:10	241	0.90	2.18	72.5	2.2
Perbo13	03:25:48.8	+30:42:24	407	0.47	1.14	38.2	3.9
Perbo14	03:25:50.6	+30:42:01	342	0.41	1.00	38.7	3.5
Perbo44	03:29:04.5	+31:18:42	274	0.72	1.73	47.0	2.7
Perbo45	03:29:07.7	+31:17:17	455	1.35	3.25	52.9	4.8
Perbo50	03:29:14.5	+31:20:30	313	1.31	3.15	68.0	3.2
Perbo51	03:29:17.0	+31:12:26	423	0.62	1.49	34.7	3.6
Perbo58	03:29:25.7	+31:28:16	273	0.33	0.78	25.9	1.8
Perbo74	03:33:01.9	+31:04:32	255	0.38	0.91	44.5	2.6
Perbo105	03:43:57.8	+32:04:06	283	0.61	1.47	46.6	2.8
Perbo107	03:44:02.1	+32:02:34	388	0.48	1.17	46.0	4.1

Table 1Core Properties from Bolocam 1 mm Data

Notes.

^a Derived from an elliptical Gaussian fit, deconvolved by the 31'' beam.

^b Mean density calculated in a fixed linear aperture of diameter 10⁴ AU.

(Schnee et al. 2010)

850µm-derived Properties of Starless Cores

No.	SCUBA Core (J2000.0)	Nearby Sources ^b	Mass (M_{\odot})	R _{eff} (pc)	M/M_J	New Classification ^c
Oph-1	J162659.2-243420	Oph C-MM3	5.3	0.060	2.2	Undetermined
Oph-2	J163229.0-242906	IRAS 16293-2422E	3.2	0.038	2.1	Starless
Tau-1	J043134.1+180802	LDN 1551 IRS 5	7.3	0.057	3.6	Protostellar
Tau-2	J043144.6+180832	LDN 1551NE	3.8	0.047	2.3	Protostellar
Per-1	J032855.2+311437	IRAS 2A	12	0.062	6.7	Undetermined
Per-2	J032859.5+312131		7.6	0.053	4.8	Starless
Per-3	J032901.3+312031	IRAS 6	15	0.059	8.6	Undetermined
Per-4	J032903.1+311555	NGC 1333 13A	18	0.047	13	Undetermined
Per-5	J032906.4+311537	HH 8	6.5	0.040	5.5	Undetermined
Per-6	J032908.7+311513		8.1	0.055	4.9	Starless
Per-7	J032910.1+311331	IRAS 4A	25	0.045	18	Protostellar
Per-8	J033217.6+304947	IRAS 03292+3039	7.2	0.055	4.4	Undetermined
Ori-1	J053514.4-052232	SMA 1	1200	0.17	130	Undetermined
Ori-2	J053514.4-052608	COUP 617	150	0.19	15	Undetermined
Ori-3	J053516.8-051926	OMC-N4	160	0.16	19	Undetermined
Ori-4	J053522.0-052508	COUP 1194	80	0.13	11	Undetermined
Ori-5	J053524.8-052220	COUP 1314	35	0.13	5.0	Undetermined

(Sadavoy et al. 2010)

Ophiuchus Cores

Grey scale: Spitzer 8µm map Contours SCUBA 850µm map in steps of 0.2 Jy/beam (Sadavoy et al. 2010)

Perseus Cores

Grey scale: Spitzer 8µm map Contours SCUBA 850µm map in steps of 0.2 Jy/beam (Sadavoy et al. 2010)

Jeans Instability of Cores

