MULTIPLE EXPOSURES
IN LARGE SURVEYS
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Serious Issues

Significant fraction of catalogs is junk

GALEX ~50%
PS1 3PI 50-80%
PS1 MDS >95%

Textbook methods often fail due to artifacts
What are the good techniques?
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Time Series of Faint Sources?

Co-add images and do forced photometry
Ideal if we have all observations but we never do

Independent catalogs as we go
Need to dig in the noise to build good timeseries

Goal is an incremental strategy to weed out noise
Otherwise catalogs are overwhelmed by junk
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Detection Probability

Measured flux is true + normal error f; = f + ¢
Probability of detection

P(fi> folf) = 5 erfe (fD_f)
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Detection Probability

Measured flux is true + normal error f; = f + ¢
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Probability of detection

As a function of the true flux
Thresholds at 2-, 3-, 4- & 50

Sharper for 9-way

0.8}

0.6

0.4

Probability of Detection

0.2f

0.0

Flux [o]



Detection Probability

- Tamas Budavari

-1 Multiple exposures

o Binomial  P(n|k, f) = (

T

) P a-p)

Probability of multiple detections
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What is a Real Source?
g s Budavari

o Isit “real” or just “noise” ?
01 Bayesian hypothesis testing

L real

L noise

B =
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What is a Real Source?

Is it “real” or just “noise” ?
Bayesian hypothesis testing

Lew | Lea= [Ur(DL()

B — | n
Lnn:-ise : L(f) — (]_—Pf)k_n HG(fzafa 0'2)

Out of k observations n detections of f. fluxes
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Apparent Flux Distribution

Galaxy number-counts as fn of magnitude
Empirical relation approximately shows

( |'; -If_
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More and more fainter and fainter sources!
But there is a limit, cf. Olbers’ paradox
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Distribution of Noise Peaks

Local maxima of continuous Gaussian random field

Cf., A(K) by Barden,
Bond, Kaiser, Szalay
(BBKS; 1986)
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Something Like LSST

Simulation
Sky at 5c is 24 mag
Object limit is at 28

Bayes factor

Considering only fluxes

Noise 27 26 25 24
True Object Magnitude



Adding Directions

Bayes factor from cross-id
As TB & Szalay (2008)

Faint sources can be
distinguished based on
their celestial coordinates

Always at “same” place!

27

26 25 24
True Object Magnitude



Cross-Identification

Hard problem
Computationally, Scientifically & Statistically
Need symmetric n-way solution
Need reliable quality measure

Same or not?
Distance threshold? Maximum likelihood?
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Same or Not?

The Bayes factor

BH. K|D) — P

p(D|K)
H: all observations of the same object

K: might be from separate objects
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Same or Not?

The Bayes factor

B(H,K|D) = p(DIH)

p(D|K)
H: all observations of the same object

Same properties, e.g., coordinates, brightness

K: might be from separate objects

Properties could be different
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Works in General

Analytic results for Gaussian errors
Incremental n-way strategy

We can find moving stars
With unknown velocities

Matching events in time
E.g., supernovae

\
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SkyQuery - the new generation!

Dynamic federation of astronomy databases
Query the collection as if they were one

The 3" generation tool coming in December
Cluster of machines running partitioned jobs
Proper probabilistic exec with variable errors
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SkyQuery - the new generation!

i username: budavari | account
SkyQuery h = avari | acc

| sign out

Dynami ISes

home schema query jobs my db docs

Qu e ry quu;k Output table: Comments:
execute |xm.'at|:h1 | | |

SELECT s.0bjID, g.0bjID, t.0bjID,

»

rd ¥X.RA, x.Dec, x.LogBF b
The 3 E FROM SDS5:PhotoObjAll AS s er

CROSS JOIN GALEX:PhotoObjAll AS g

CI u Stel CROSS JOIN TwoMASS:PhotoXSC AS t )S
XMATCH BAYESFACTOR AS X =
EXIST = ON POINT(s.Cx, 5.Cy, 5.Cz), 8.1
Propet { ) rs

EXIST g ON POINT(g.RA, g.Dec), ©.2
MAY  t ON POINT(t.RA, t.Dec), ©.5
HAVING LIMIT 1e6

WHERE s.Galaxy = 1 i

1
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Only the first steps...

Resolved shapes: radio morphology (Fan, 7B+ 2014)
Colors to augment matches (Marquez, TB, Sarro 2014)

Chandra -
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Galaxy Light ~ Linear Combination

Principal Components g
Analysis (PCA) f s050

Wavelength A
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Principal Component Analysis

Principal directions
Directions of largest variations
Eigenproblem of covariances
Singular Value Decomposition

Problems
Needs lots of memory
Only need largest ones
Very sensitive to outliers
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Science is Interactive
e amss Budavari

“Too much to be accurate”

By the time you do the calculations,
the answer may have changed...
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Streams of Data
g s Budavari

- Mean
1N
= — xn
SN2
n—1 1
Hn = My + —X,
n

B=Y e + (1 —y)x
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Streams of Data
- TaméisBudavari

© Mean = Covariance
I T
ﬂ=FHZ=1:xH C=chmv+(1_y)yy
—1 1 =X —
w, = . My + ;xﬂ d ﬂprev

H=¥Rprey + (1 = y)x Iterative evaluation!
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Streaming PCA

Initialization

Eigensystem of a small, random subset C T
: - R EpApE,
Truncate at p largest eigenvalues

Incremental updates

Mean and the low-rank A matrix
~ T
SVD of A yields new eigensystem ~ AA

C~yE,ApE,+(1—y)yy'

Randomized algorithm!
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Streaming PCA

U s Budavar
1 3D Gaussian rotated into 50D

o1 Stretches: 7,6, 5
o Total Var =110

TTY
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With Outliers

Adding 0.1% outliers
o =100 in each bin

Outliers take over the PCs
Instability, no convergence
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Robust Algorithm

Outliers under control
Marked on top

Initialized with SVD
On a set of 100 vectors
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Summary

Plan for the junk
Proper statistics save money and gain speed

Incremental randomized strategies scale
Crossmatching, embeddings, ML, etc.

Not there, yet
Need new methods and tools
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