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Automated Learning Methods

« All methods assume that the different types (classes) are
separable in the feature space.

Light profile of galaxies are different from that of stars



Homogeneous Features: Classification Problem

SDSS
colour-colour plot

Composed of about a million
points showing clustering of
Quasars (blue and red), main
sequence stars (green), late
type stars (yellow) and
unresolved galaxies (pink) in
a colour -colour plot of SDSS
colours.




and our goal is to identity
them and verify whether the
actual number count match
with the estimated values.
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Learn from Examples

Blue are low redshift Quasars
and our goal is to identity
them and verify whether the
actual number count match
with the estimated values.
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and our goal is to identity
| them and verify whether the
' actual number count match
with the estimated values.

Map features to Class Blue are low redshift Quasars

The region in the box has
about 150,000 confirmed
observations and about 6
million unconfirmed cases.

All objects have known
colours (partial information)
but the confirmatory spectra
and hence class is unknown.







r“ T F‘ Feature Space

» SDSS provides 5 magnitudes for each object in bands u,
g, r, 1 and z that can be used to construct a ten
dimensional colour space.

« A subset of the 150,000 objects with confirmed

spectroscopic classification can be used to estimate the
likelihood.

» The classifier can be tested on remaining data to verity
the accuracy of the model.
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. SDSS provides 5 magnitudes for each object in bands u, g, r, |
and z that can be used to construct a ten dimensional colour

space.
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classification can b
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estimate the likelihood.
The distribution is not smooth

The colour space need to be binned to approximate the
distribution.

» The classifier can be tested on remaining data to verify the
accuracy of the model.



Two Issues with Bayesian Formalism

» How would you guess the True value of the for each
bin?

. of the input feature space -
likelihood is conditionally dependent on feature vectors -
Naive Bayesian models that ignore conditional
dependence fail on even simple XOR problems.



Bayesian Prior

» Ensemble methods: Multiple models, same data : many weak
learners combined to form a strong learning model

» Bagging: each model in ensemble vote for the probable
candidate

» Boosting: Emphasise the failing models with weights

« Bayesian Model Averaging (BMA): Sampling Hypothesis
from Hypothesis Space

 Bayesian Model Combination (BMC): Seek combination of
models closest to a distribution.
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Bayesian Methods

e Ensemble methods: Multiple models, same data

 Bagging: each model in ensemble vote for the probable
candidate

 Boosting: Emphasise the failing models with weights

 Bayesian Model Averaging (BMA): Sampling Hypothesis
from Hypothesis Space

 Bayesian Model Combination (BMC): Seek a combination
of models closest to a distribution.



Our Solution

» Estimating both Prior and Likelihood from data.

» Boosting: Emphasise the failing models with weights

Replace Prior by weights within the same model.



Likelihood estimation of Binned Space

* There may not be sufficient samples in each bin to estimate
likelihood when conditional dependence constrains are
iImposed on them.



Likelihood estimation of Binned Space

* There may not be sufficient samples to estimate likelihood
when constrains on conditional dependence is imposed on
them.

« We adopted an imposed conditional independence formula

that approximate the likelihood for a conditionally dependent
event.



Imposed Conditional Independence

The likelihood for a conditionally dependent event A is
approximated as

. L(Alb,c,de,f) ~

M*L(Alb,c)* L(Alb,d)* L(Alb,e)* L(Alb,f)* L(Alc,d) *L(Alc,e)*
L(Alc,f)* L(Ald,e)* L(Ald.f)* L(Ale,f)

» Works better than Naive Bayes — no issue with XOR gate



Imposed Conditional Independence

The likelihood for a conditionally dependent event A can be

approximated as the product of the likelihood of its paired
inputs.

. L(Albc,d.e,f) ~

M*L(Alb.c)* L(Alb,d)* L(Alb,e)* L(Alb,f)* L(Alc,d) *L(Alc,e)* L(Al
¢.f)* L(Ald,e)* L(Ald,f* L(Ale,f)

 Works better than Naive Bayes — no issue with XOR gate



Classification of the 6 million Objects

Blue are , Yellow are unresolved Galaxies and Green are main sequence
Stars




Verification using Heterogeneous Surveys

Table 5. Summary of the matching of our catalogue predictions with some existing catalogues.

DBMNN predictions Failures as per cataloguc
Cat. code Quasar Galaxy Star Quasar Galaxy Star Accuracy i mag rangec Ref
{pcr cent)
2DF 5976 235 1535 122 0 32 o8 17.0-22.0 1
XEH 212 Lh { Lh L 0 [ O 15.8-20.5 2
ASFS [OES 1 2 31 0 12 31 06 14.5-22.1 3
BATCS 21 {0 rr = 0 0 86 18.1-20.5 4
CGRBS 265 1 0 0 I 0 L O 14.7-21.5 3
DLyal) 21 II- 1 0 0 I Q5 16.5—-19.4 6
F20QL 186 1 L i 1 A o8 16.6—21.0 7
KFQS 44 2 13 5 l £ el 16.8-20.6 8
LOQAC 61 504 17 267 0 17 267 1 00 14.7-22.3 o
LORF 60 280 14 219 ) 14 219 10D 14.7-21.7 L}
BZC 249 -~ 2 |} 4 2 o8 15.0-21.0 | 1
PC S 53 {} 2 0 0 2 D6 15.1-18.5 12
EOSA L1324 {3 1 {2 ¥ I 100 1 5.5-20.5 13
5013 65223 55 A5 0 55 3495 e L®) 14.7-22.8 14
SQRE13 7 { 21 7 0 0 75 16.3—-20.3 14
DR7TQ 79 140 17 341 ) 17 341 100 149-21.8 1 5
S85C 82 2 1171 H2 2 0 93 149-21.5 16
S5A13 5 1 1 0 0 i 83 17.8-20.8 17
XMMSS 37 H 5 1 0 2 93 14.9-20.7 | 8
SDSS/AXMM 580 0 0 {0 0 0 100 15.2-20.5 19
RASS/AZ2ZMASS 6 ) ) 0 0 0 100 15.5—-18.4 20
CATXA 16 £ { i 0 0 100 15.1—-17.8 21
WDMB 20 {0 1A 20 0 i 84 15.3-20.5 22
FM S 639 6 19 596 639 6 0 o7 14 .8-20.2 23
SGLOQ 2 O L8] Lk L L RN 18.8-19.1 24
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Further Information
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The Predicted Catalogue
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@5 Portal Simbad VizieR Aladin  X-Match Other Help

Catalog Selection Page

R T

@ (B) = = (Simple Target| List Of Targets Fast Xmatch with large cataloegs or Simbad
Search Criteria . |Target Name (resolved by Sesame) or Position: Target dimension:
Save in COSportal || Clear J2000 v |2 arcmin

Keywords [Back]

- * Radius Box size
k |/MMRAS[A19/80

Tables
|/MNRAS/419/80 | T [ 1 Photometric Classification Catalogue of SDSS DRY (Abraham+, 2012) ReadMe+ftp
..catalog | | J/MNRAS/419/80 Post annotation

| [LJ/IMNRAS/419/80/catalog Photometric catalogue based on SDSS DR7 (a sample is published as Table 4) (6038247 rows)




A more complex situation

» What if all input features are not known?



Heterogeneous Input Features

» What if all input features are not known?

Straightforward answer : Compute the inverse probability
for the missing feature just as you handle missing values.



A more complex situation

» What if all input features are not known?

Straightforward answer : Compute the inverse probability
for the missing feature just as you handle missing values.

. If we do not have a training data
with all features for computing inverse probability.



A Challenging Problem
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Minimize false alarms
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All Transi=rts
o C5Siargel
o MLSsrgel?

S A Challenging Problem

s Generate alerts on optical transient detections
Blazars

‘s Minimize false alarms
Bright Cvs \

Tos Customize alarms to user demands

Less Send the alerts immediately -

= . Nearest distance to a galaxy or star

X Fﬁl‘-‘ﬂ,_.‘-:m . : Distance to nearest known radio object

R : Distance to nearest known x-ray detections

- mis : Magnitudes in archives and in earlier detections
Others types

w 055
« MLS
a 555



Missing Values

Example : Nearest distance to a galaxy or star

. Distance to nearest known radio object
: Distance to nearest known x-ray detections
: Magnitudes in archives and in earlier detections

Possible only if the object is within the foot print of a
survey



Missing Values

Example : Nearest distance to a galaxy or star

. Distance to nearest known radio object
: Distance to nearest known x-ray detections
: Magnitudes in archives and in earlier detections

Possible only if the object is within the foot print of a
survey

Each survey may use a different unit for their catalogues
— need to be considered separately



Missing Data Values

1 b.ESQEDGQQQQQQQQ? 0.3348999999999598 0.41555999995993958 0.07555990000000004 0. 1562995000000001
0.0807000000000002 -99399 -9999 -9999 -9989 -5909 -59999 -9999 -9999 -9999 -0990 -05999 -0999 1.3 -9999 -9999
22.7 -8809 -0989 -95880 23.2 -85099 -0980 -0809 -5099 -§980 -0909 -5999 -§9080 -08509 3 -9950 -80993 -99589 3

2 -0.0428999999999995 -0,0269999999939952 - 0.023999999959309] 0.013500000000C002 0.0183000000000004
0.00300000000000011 -9999 -99599 -5999 -9999 -95899 -5999 -9999 -9599 -9999 -9959 -9999 -99399 17.2 -9999 -5999
29.8 -0999 -0990 -0999 -0999 -0099 -9999 -9999 -9999 -9999 -9999 -09999 -9999 -99099 -9999 -9999 -9999 -9999 11

3 0.0260559999999956 0.0592000000000006 0.027499955955959S 0, 033100000000001 0.00140000000000029
-0.0217000000000007 -9999 -9999 -9999 -9999 -9993 -9999 -9999 -99939 -09999 -0993 -9999 -9999 9.3 -9999 -9999
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -5999 -09999 -9999 -5999 -09999 -9599 -9999 -9999 -95939 -9999 -99599 11

4 -0.041199999993999399 0,170099 0.0119989999999994 0,211299 0.053198399999939993 -0, 158100000000001 -9999 -9999
-99599 -9999 -9999 -9999 -599599 -9999 -9999 -5999 -9999 -959095 4.8 -9999 -9999 -9990 -9999 -9959 -9599 -95999
-9909 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -99399 -9999 -9999 -9999 -9995 2

= 0.250900000000001 -0.166799995999555 0. 182400000000001 -0.4177 -0.0685000000000002 0.3492 -959995 -9959 -9599
-9999 -9999 -09999 -9999 -9990 -0999 -5999 -0999 -9999 13.3 -9999 -9999 -9999 -09999 -9999 -0990 -89999 -9999
-9998 6.4 -95999 -9999 -9999 -95999 -9999 -99599 -9999 -9999 6, 37076376235 14.8457897427 2

6 0.377198999999997 0.247798999999997 0.1267 -0.1254 -0.250458999999998 -0.121098995995937 -99399 -9999 -9999
-9999 -5999 -9999 -9999 -9099 -0999 -9999 -9999 -0999 0.8 -9999 -90999 .9999 -9909 -9999 -9999 -9999 -9999
-9999 -9999 -9999 -9999 -9999 -09999 -89999 -9999 -9999 -5999 -9999 -9999 2

7 0.791 -0.0876999559559598]1 0.202200000000001 -0.8786999959939958 - 0.5887959959955859 0, 28589558599599399 - 99595
-9909 -9999 -9999 -9999 -9999 -9999 -9999 -90999 -9999 -9999 -9999 1.4 -9999 -9959 -9999 -9999 -9999 -9909
-9999 -5999 -9999 -9999 -09999 -9999 9599 -9999 -9959 -9999 -09999 -9999 -0009 -9999 B

The training data itself has missing data values.
Note: The accuracy of the actual observation is not beyond one or two decimal places. The double

precision is used here only to reduce round off error while rescaling the data during the processing.




Missing Values

b 2>59300999999997 0, 334B99999999998 0.415399999999938 0, 0753990000000004 0, 136255000000001
0.0807000000000002 -S999 -0999 -9959 -9909 -50099 -0999 -50598 -0909 -90999 -9909 -5009 99 L - HHbE - HUE0

22,7 -8099 -95909 -DGS0 73,2 -9809 -8909 -50999 -09580 -95995 -8900 -5999 -8950 -50095 3 ! 959 9999 2
- 0, 0428999999999995 - 0, 0269959999999992 -0, 023999999995955]1 0.0155000000000002 BGGGBE
0.00300000000000011 -9999 -9999 -99399 -5959 -9599 -9993 -99399 -5939 Ew -99099 -9099
29,8 -890999 -9909 -09090 -9909 -9099 -9999 -0990 -9909 -90999 -9999 - %S 9 -999 99 -89999 -9999 11
0.0260999999999996 0. 0552000000000006 0.0274399999999999 0, G@ el 0. EIE"EJEIIEIEJEQ
-0.0317000000000007 -9999 -990939 -9999 -9999 -9990 9999 m -99089 -9990 9,3 -99909 -95995

9 99 -099939 -5999 -9999 -5999 11

-9899 -9999 -95099 -09999 9999 9999 2
0.250900000000001 -0. 155? Q. GEB_:EJGGEJE]EJEIEJEJEIGE 0.3492 -9999 -95999 -90599

-9999 -9999 -5939 -0999 -5999 -99599 -5999 -59999 - &

-0.0411999995553935S 0.170099 0.01159899999 129 EJ [ﬁ 9999 w 8100000000001 -S999 -99599

-9999 -9999 -9999 -9999 -9999 -9939 - e 999 8 9 -9909 -9950 -99099 -9999 -9999
-9 M 999

-9993 -9999 -5939 - 9 t 999 - -9999 -9999 -59999 -09590 -9999 -9999 -5999 -09999

-99938 6.4 9999 ? g - 99‘3 -99099 B6.37076376235 14,9457997427 2

0. 3??1989@9 Q. 2¢ &Y 999? EI 1 4 -0,2>50498993993998 -0,121098999999597 -9999 -99939 -9999

-9999 -999 99 @9999 -9899 -9999 0.8 -9999 -9099 -9999 -5090 -99099 -9999 -9909 -9099

-9999 -999 ? 99 9999 9999 -9999 -9990 -9999 -9599 -9939 2
995

0.791 9559581 0,202200000000001 -0.8786599599599598 - 0.58875959999595599 0, 289899999555593 - 59999

-9999 999 -950999 -9999 -90999 -9999 -9999 -9999 -9999 -9999 -9999 1.4 -9999 -09999 -90999 -0999 -9999 -9999
-9999 -9999 -5999 -9999 -9999 -9999 -5999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 &




Our Approach

The likelihood for a conditionally dependent event A can

be approximated as the product of the likelihood of its
paired inputs.

. L(Alb,c,d,e,f) ~

M*L(Alb,c)* L(Alb,d)* L(Alb,e)* L(Alb,f)* L(Alc,d) *L(Alc,e)*
L(Alc,f)* L(Ald.e)* L(Ald.f)* L(Ale,f)



Our Approach

The likelihood for a conditionally dependent event A can be
approximated as the product of the likelihood of its paired inputs.

. L(Alb,c,d,e,f) ~

M*L(Alb,c)* L(Alb,d)* L(Alb,e)* L(Alb,f)* L(Alc,d) *L(Alc,e)* L(Al
o.f)* L(Ald,e)* L(Ald.f)* L(Ale,f)

 Estimate approximate Likelihood based on whatever information
available and use it for training and testing.



Dynamic Learning

o With lot of missing values in the observations, each input
data has partial information about the features associated
{0 an outcome.



Dynamic Learning

o With lot of missing values in the observations, each input
data has partial information about the features associated
{0 an outcome.

» Learn as we go... use Bayesian update rule to update the
belief in each input feature and its effect on the outcome.



Dynamic Addition of Features

o We want to use all available information about the
detections as and when they become available.



Dynamic Addition of Features

o We want to use all available information about the
detections

* Since likelihood is computed as the product, it is feasible
to update it with new evidences as and when they become
available.



Dreaming Computers

 We now have many input features but not so many
examples to learn from. This can lead to over-fitting the
data and Memorising rather than generalising the
situation.



Dreaming Computers

 We now have many input features but not so many
examples to learn from. This can lead to over-fitting the
data and Memorising rather than generalising the
situation.

» Hypothesis: Dreams are synthetic inputs our brain uses to
teach us how to react to plausible situations. Can we
create dreams for computers?



Information from Error Bars

 Error bars tell us that the nature of the object remains
same even if the measurement value is perturbed within
the range of the error bar — can be used to generate new
data



DBNN Annotator

A collaborative project with Ashish Mahabal (Caltech),
IJUCAA, Pune and the CRTS Team with funding from
IJUSSTF and ISRO.



CRTS Predictions

A1 [e] 8 [5] [6] [7] [8] [9] [10] [11] [12] [16] Total 4 'Cataclysmic Variable"

[1] 273 0 0 293 2 "Sypernova"

[2] 402 0 0 0 421 3rother

B 0 o0 3% 0 0 0 0 0 0 0 0 0 34 5,"Blazar Outburst"
] 0 0 0 60 0 0 0 O 0 0 0 6 6,"AGN Variability"
g 0 0 O O 1260 O O O O O O 126 7 "UVCeti Variable"
77 0 o0 O O O 32 0 0 0 0 0 0 3 8 "Asteroid"

g o0 0 0 o0 0 0 6 0 0 0 0 0 =6 9,"Variable"

9 o0 o0 o o0 OoO o0 0O 18 0 0 0 o0 18 10,"Mira Variable"
[tgpo o 0 o 0 0 0 O 12 0 0 0 12 11,"High Proper Motion Star"
Mo o o o0 o0 0O 0O 0O 0 43 0 0 43 12 "Comet"
M2jo0 o o0 o0 o0 o0 o0 0O 0O 0 5 0 5

1y 0 0 0 O O O O O O o0 o0 1 1

Total 277405 41 61 131 33 10 23 16 47 6 2 1052



CRTS Predictions

11 21 [3] [58 [6] [7] [8] [9] [10] [11] [12] [16] Total
(1] 273 0 0 93
2] 4 [ 402 0 0 421
3] 0 0 3 0 0 0 0 O 34
5] 0 0 0 60 0 0 0 O 61
6] 0 0 0 0 160 0 0 0 126
77 0,0 0 0 0 32 0 0 0 32
8] 0 0 0 0 0 0 6 0 0 6
9 0 0 0 0 0 0 0 1 0 18
1000 0 0 0 0 0 0 0 0 12
170 0 0 0 0 0 0 O 0 43
1200/ 0 0 0 0 0 0 O 0 5
[16]0/0 0 0 0 0 0 0 1 1
Total 277405 41 61 131 33 1052

ecall - 273/277 =98.5%
False Alarms — (293-273)/293 = 7%

e
x’:\
w
e
(@)
~
\l
(@))
()]

1,"Cataclysmic Variable"
2,"Supernova"

3,"other"

5,"Blazar Qutburst"
6,"AGN Variability"
7,"UVCeti Variable"
8,"Asteroid"

9,"Variable"

10,"Mira Variable"
11,"High Proper Motion Star"
12,"Comet"



But..

2 8 [51 [6] [7] [8] [8] [10] [11] [12] [16] Total

[1] 352 815
2] 673 1052
3] 39 48
5] 0 0 1 44 47
[6] 166 274
77 1 0 0 0 0 66 68
8] 0 0 0 0 o 0 3 0 0 0 0 0 3
9 0 0 0 0 0o 0 0 2 0 0 0 0 2
0] 0 0 0 0 o 0 0 0 1 0 0 0 1
M1 0 1 1 0 0 0 0 0 0O 66 0 0 68
12 0 0 0 0 0 0 0 0 0 0 3 0 3
6] 0 0 0 0 0o 0 0 0 0 0 0 1 1

|

479 916 134 120 334 112 20 41 23 187 10 6 2382



Better than saying “could be anything”

Predictions 1-4 Actual BP1 BP2
12 011 2 69.16 % <-Failed 30.84 %

12 011 2 50.41 % <-Failed 49.59 %
12 011 2 50.41 % <-Failed 49.59 %
7

2 61 7 99.95% <-Failed 0.05 %
21 06 1 72.45% <-Failed 27.38 %
2 1 011 1 50.94 % <-Failed 49.06 %
21 0 98.06 % <-Failed 1.94 %
21 06 1 96.13% <-Failed 3.75 %

2 6 111 6 63.56 % <-Failed 27.91 %
6 2 10 1 33.84% <-Failed 33.61 %

12 06 2 50.69% <-Failed 49.31 %
12 06 2 50.44% <-Failed 49.56 %



http://www.lucaa.ernet.in/~nspp

nspp @iucaa.ernet.in

nank


http://www.iucaa.ernet.in/~nspp
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