

# Astroinformatics challenges for next generation radio transients surveys

### Tara Murphy University of Sydney

### 11th December 2013

Astroinformatics 2013

11th December 2013



### **Transients capture our interest**



http://www.hao.ucar.edu/education/archeoslides/slide\_20.php

Radio transients

Astroinformatics 2013

11th December 2013



# Transient behaviour is extreme

An object can not change its brightness in an interval shorter than the time light takes to cross its diameter





- Giant pulses discovered in Crab pulsar Hankins et al. 2003, Nature, 422, 141
- ► ~ 2 ns structure in pulses  $\implies d = c\Delta t = 1 \text{ m!}$

Radio transients

Astroinformatics 2013



# What causes transient behaviour?

### 1 Explosions

• e.g. supernovae, Gamma-Ray bursts, orphan afterglows

### 2 Propagation

• e.g. Extreme Scattering Events, intra-day variables

### **3** Accretion

• e.g. neutron stars, black holes, quasars, X-ray binaries

### 4 Magnetospheric

• e.g. magnetars, flare stars, planetary variability

### 5 Unknown

e.g. known unknowns, unknown unknowns...

11th December 2013



# Mysterious bursts from space

- Gamma-Ray Bursts were first detected by the US military Vela satellites
- Their goal was to monitor nuclear testing from space



- BATSE detected 2704 GRBs in the 1990s
- Isotropic distribution implied extragalactic origin http://apod.nasa.gov/htmltest/jbonnell/www/grbhist.html

Radio transients



# GRB afterglows — the missing link

- GRB970228 in February 1997 was detected by BeppoSax
- It was subsequently detected by Hubble



Radio transients

Astroinformatics 2013



### The search for orphan afterglows



Ghirlanda et al. 2014, submitted

Astroinformatics 2013



# The radio transients stack

The radio transients stack

Astroinformatics 2013

11th December 2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シへ⊙



## The radio transients stack



Astroinformatics 2013



- **The challenge:** Schedule telescope including potential for automatic scheduling and triggers. Do rapid correlation and processing of raw data.
- The technology: Combination of hardware and software correlators. Custom scheduling software.
- Where are we? Innovation at the intersection of astronomy, computer science and engineering. FPGAs and GPUs new on the scene: limited but growing expertise in the astronomy community.
- VO? Probably not relevant for low level/early data products.



### Step 1: Telescope



### Wayth et al. 2009, PASP

The radio transients stack

Astroinformatics 2013

11th December 2013

(日)



- The challenge: Transfer large amounts (terabytes, petabytes) from the telescope to a data processing centre. Store this is a way that can be accessed by others.
- The technology: Large scale databases, high bandwidth data links, long term storage tapes.
- Where are we? Mostly in place and operational. Science teams transfer data to their own resources for further processing.
- VO? Plan for ASKAP Science Data Archive will include VO access using standard protocols.



## Step 2: Data transfer and storage



http://www.mwatelescope.org

The radio transients stack

Astroinformatics 2013



- **The challenge:** Convert large amounts of raw data into science-ready data products such as images or spectral cubes.
- The technology: Community developed data reduction packages such as Miriad, AIPS, CASA. New custom packages such as ASKAPSoft, MWA-RTS.
- Where are we? Existing packages don't scale to supercomputing levels. Work on adapting these is ongoing.
- VO? Largely disconnected from web or other software packages.



# Step 3: Calibration and imaging

### 1061705760: VirA @ 139--170MHz: 2013/08/28/06:15:44 UTC (2013/08/28/14:15:44 WST)



### Credit: Natasha Hurley-Walker

The radio transients stack

Astroinformatics 2013



- The challenge: Find all astronomical objects in an image or data cube. Measure the properties of all objects.
- The technology: Generally a custom program written in Python or C. Store results in a database for rapid(ish) access.
- ▶ Where are we? Multiple packages exist. All solve different but related problems. Different levels of integration.

VO? Not really...



# **Step 4: Source detection**

- > Identification of interesting events will need to be catalogue-based, not image-based
  - missed/blended sources will trigger huge numbers of false alarms
  - 99% accuracy is not good enough!
- > BLOBCAT (Hales, Gaensler et al. 2012)
  - flood-fill: superior to gaussian fitting
- > AEGEAN (Hancock, Gaensler et al. 2012)
  - Laplacian: robust component separation









Hancock et al. (2012)



### SEXtractor





Selavy

IMSAD

# AEGEAN



The radio transients stack

Astroinformatics 2013



- The challenge: Classify light curves (flux vs. time) to determine what kind of transient or variable behaviour we are seeing.
- The technology: Wide range of off-the-shelf machine learning packages in a variety of languages.
- Where are we? Off-the-shelf solutions are OK. Not well integrated with data analysis pipelines. Limits to scalability.
- VO? Starting... (DAME?)



# Step 5: Light curve classification

- Supervised learning methods (e.g. random forest)
- Require automatic calculation/extraction of features
- Successful use in optical, X-ray



### Lo et al. 2013, ApJ, submitted



# Step 6: Transient identification

- The challenge: Identify object by cross-matching with existing surveys and archival images, spectra and other data, or searching literature.
- The technology: Databases that store this information. VO protocols and other methods for querying it automatically. Online archives (NED, SIMBAD, CDS, Vizier).
- Where are we? The databases are well established and many have the capacity to automatically query. Access reliability is an issue — 'best' solution is still to locally download.
- ▶ VO? Partial integration. Storing data locally is still easier.



# Step 6: Transient identification



### http://aladin.u-strasbg.fr

The radio transients stack

Astroinformatics 2013

11th December 2013



# **Step 7: Publication and alerts**

- The challenge: Alert the wider transients community as soon as possible after the event is detected.
- The technology: Ranges from 'old school' Astronomers Telegrams to protocols such as VO Event to social media such as Twitter.
- Where are we? A range of mechanisms exist. Most VOEvents generated by a few surveys. Will become more interesting as more produce data.
- VO? Well established connectivity with VOEvent XML as the underlying standard.

11th December 2013



## Step 7: Publication and alerts

TITLE: GCN CIRCULAR NUMBER: 13180 SUBJECT: GR8120327A - ATCA radio afterglow detection at 34GHz DATE: 12/03/31 21:01:15 GMT FROM: Paul Hancock at U of Sydney <hancock@physics.usyd.edu.au>

P. Hancock, T. Murphy, B. Gaensler, M. Bell, D. Burlon (University of Sydney/CAASTRO), A. de Ugarte Postigo (Dark Cosmology / IAA)

We observed GRB120327A (GCN13123) with the Australia Telescope Compact Array for 40 mins centered on 17:55UT on March 31 2012 (T0+4.625days).

We find an unresolved radio source at ra=16:27:27.4, dec=-29:24:54.0 with a flux of 0.72+/-0.03 mJy. This position is consistent with the optical position of GCN13138.



Further observations are planned.

### http://gcn.gsfc.nasa.gov http://skyalert.org

The radio transients stack

Astroinformatics 2013

11th December 2013

- N



# Step 8: Data and archival access

- The challenge: Make large and information rich scientific data products available to the collaboration and wider community.
- The technology: Large scale databases, VO protocols, web 3.0 interfaces.
- Where are we? MWA data archive is currently 'do it yourself'. ASKAP data archive is in the planning stages.
- **VO?** Should be possible to utilise existing VO protocols.



# Step 8: Data and archival access



### ASKAP Science Processing Document ( B > ( ) > ( )

The radio transients stack

Astroinformatics 2013



# Transient snapshot rates (c. 2007)





Astroinformatics 2013

11th December 2013

26/31

Э







Keith Bannister, adapted from Frail et al. 2012, ApJ, 747, 70 E Sector

Astroinformatics 2013



## The 'next generation' is here





# Transient detection pipeline

### Source 200201 MWA\_232206-544535

### RA 23:22:06.69 Dec -54:45:37.07 search SIMBAD NED

Cross-match this source with the imported survey catalogues. View position plot.

### Quality source: None [set to True | False | Remove ]





# Challenges for transient detection

- 1 Don't want to average your data
- 2 Want to analyse in (close-to) real time
- 3 RFI is similar to what you're looking for
- 4 Confirmation is harder if object is transient
- 5 Need to mobilise resources quickly



# Challenges for transient detection

- 1 Don't want to average your data
- 2 Want to analyse in (close-to) real time
- 3 RFI is similar to what you're looking for
- 4 Confirmation is harder if object is transient
- 5 Need to mobilise resources quickly

And an observation... After 32 years, FITS is still the glue!

Where to now

11th December 2013