$May\ 20-22,\ 2013\\ A\ Neapolitan\ of\ Masers\ @\ Sydney,\ Australia$

The VLBI Monitor Project of the 6.7 GHz Methanol Masers using the JVN/EAVN

Koichiro Coconuts Sugiyama (Yamaguchi Univ.)

Collaborators: Kenta Fujisawa¹, Kazuya Hachisuka², Y. Yonekura³, K. Motogi¹, S. Sawada-Satoh⁴, N. Matsumoto⁴, N. Furukawa³, D. Hirano¹, Y. Saito³, Z.-Q. Shen², M. Honma⁴, T. Hirota⁴, Y. Murata⁵, A. Doi⁵, K. Niinuma¹, R. Dodson⁶, M. Rioja⁶, S. Ellingsen⁷, K.-T. Kim⁸, and H. Ogawa⁹

Institution: 1) Yamaguchi Univ.; 2) SHAO; 3) Ibaraki Univ.; 4) NAOJ; 5) ISAS/JAXA; 6) ICRAR; 7) UTAS; 8) KASI; 9) Osaka Pref. Univ. Introduction

Formation scenario of high-mass YSOs

Observations: (e.g., Beltran+ 06, Kraus+ 10)

• Detected with interferometer at radio/IR

Theories: (e.g., Hosokawa & Omukai 09, Krumholz+ 09)

• Non-spherical, and High accretion-rate

the Accretion scenario

□ Next:

- 3-D velocity structure
 - directly verify the scenario
 - measure accretion rate

CH₃CN distribution in G24 A1 (Beltran+ 06)

The methanol maser at 6.7 GHz I: spatial distribution

- □ Linear morphology with RVG (e.g., Minier+ 00)
- □ Ring/Elliptical morphology
 - 12/31 sources (e.g., Bartkiewicz+ 09)
 - not simple rotation, but with expansion/infall

EVN observations of 6.7GHz methanol masers (Bartkiewicz+ 09)

The methanol maser at 6.7 GHz II: proper motion

□ Measured in several sources

• Signatures of rotating disk in some sources

(e.g., Sanna+ 10a, b; Sugiyama+ submitted)

• Accretion from spherical envelope (Goddi+ 11)

G23.01-0.41 (rotation +expansion; Sanna+ 10b)

AFGL5142 (infall; Goddi+ 11)

Project of VLBI monitor

G Final goal

- 3-D velocity (radial & proper) measurement to Directly verification of the accretion scenario on the HMSF
- Investigation for an evolution of the accretion disk around high-mass YSOs
- □ Project
 - VLBI monitor using the JVN/EAVN since 2010
 - Spatial morphology & 3-D velocity information
 - Making a catalog for VLBI image and proper motion of the 6.7 GHz methanol masers Systematically
- □ Purpose in this presentation
 - Whether all of targets associated with the disk?

Observations in 2010-2011

Target sources

Based catalog

- 519 sources (Pestalozzi+05)
- MMB sources (Caswell+ 10; Green+ 10)
- **C**riteria
 - 1. -40 < Dec < 20 : EAVN & ALMA
 - 2. $F_{total} > 65 Jy$
 - 3. No previous VLBI

% include 2 previous observed sources to verify our observational system

Target sources

Source	Coordinate	s (J2000.0)	Source	Coordinates (J2000.0)	
	$\mathbf{R}\mathbf{A}$	Dec		\mathbf{RA}	Dec
	$(^{h m s})$	(°′″)		$\begin{pmatrix} h & m & s \end{pmatrix}$	(°′″)
000.54 - 00.85	$17 \ 50 \ 14.56$	$-28\ 54\ 31.4$	$025.65 + 01.05^*$	$18 \ 34 \ 20.91$	-05 59 40.5
000.64 - 00.04	$17 \ 47 \ 18.69$	$-28 \ 24 \ 25.3$	025.71 + 00.04	$18 \ 38 \ 03.15$	$-06 \ 24 \ 15.0$
$002.53 \pm 00.19^{\dagger}$	$17 \ 50 \ 46.47$	$-26 \ 39 \ 45.3$	025.82 - 00.17	$18 \ 39 \ 03.63$	$-06\ 24\ 09.9$
006.18 - 00.35	$18 \ 01 \ 02.17$	$-23 \ 47 \ 10.8$	$028.83 - 00.25^*$	$18 \ 44 \ 51.08$	$-03 \ 45 \ 48.5$
006.79 - 00.25	$18 \ 01 \ 57.76$	$-23\ 12\ 34.2$	$029.86 - 00.04^*$	$18 \ 45 \ 59.57$	$-02 \ 45 \ 04.4$
008.68 - 00.36	$18\ 06\ 23.48$	$-21 \ 37 \ 10.4$	030.70-00.06*	$18 \ 47 \ 36.9$	$-02\ 01\ 05.$
008.83 - 00.02	$18 \ 05 \ 25.66$	$-21 \ 19 \ 25.4$	$030.76 - 00.05^*$	$18 \ 47 \ 39.73$	-01 57 22.0
009.61 + 00.19	$18\ 06\ 14.91$	$-20 \ 31 \ 43.4$	030.91 + 00.14*	$18 \ 47 \ 15.0$	$-01 \ 44 \ 07.$
009.98 - 00.02	$18 \ 07 \ 50.12$	$-20 \ 18 \ 56.5$	031.28 ± 00.06	$18 \ 48 \ 12.39$	$-01 \ 26 \ 22.6$
010.32 - 00.16	$18 \ 09 \ 01.47$	$-20\ 05\ 07.8$	$032.03 + 00.06^*$	$18 \ 49 \ 37.3$	$-00\ 45\ 47.$
011.49 - 01.48	$18 \ 16 \ 22.13$	$-19 \ 41 \ 27.2$	037.40 + 01.52*	18 54 10.5	+04 40 49.
011.90 - 00.14	$18 \ 12 \ 11.45$	$-18 \ 41 \ 28.8$	049.49 - 00.38	$19 \ 23 \ 43.93$	$+14 \ 30 \ 35.1$
012.02 - 00.03	$18 \ 12 \ 01.86$	$-18 \ 31 \ 55.9$	232.62 ± 00.99	$07 \ 32 \ 09.78$	$-16\ 58\ 12.4$
$012.68 - 00.18^{\dagger}$	$18 \ 13 \ 54.75$	$-18\ 01\ 46.6$	351.77 - 00.53	$17\ 26\ 42.54$	-36 09 17.6
012.88 ± 00.48	$18 \ 11 \ 51.39$	$-17 \ 31 \ 30.1$	352.63 - 01.06	$17 \ 31 \ 13.93$	$-35 \ 44 \ 08.5$
$014.10 \pm 00.08^{\dagger}$	$18 \ 15 \ 45.81$	-16 39 09.4	353.41 - 00.36	$17 \ 30 \ 26.18$	-34 41 45.6
020.23 ± 00.06	$18 \ 27 \ 44.56$	-11 14 54.1	354.61 ± 00.47	$17 \ 30 \ 17.09$	$-33 \ 13 \ 55.0$
023.43-00.18 MM1	$18 \ 34 \ 39.19$	$-08 \ 31 \ 25.3$	$359.43 {-} 00.10^{\dagger}$	$17 \ 44 \ 40.60$	$-29 \ 28 \ 16.0$

Observations in 2010 and 2011 for VLBI imaging as 1st epoch

- □ Array: EAVN
- Data: 2010/08, 2011/10,11
- \square Beam: ~15 x 5 mas²
- $\Box \sigma_{\text{image}}: 30\text{-}60 \text{ mJy beam}^{-1}$ $\Box \text{ Vel. res.: } 0.18 \text{ km s}^{-1}$

East Asia VLBI Network (EAVN)

Date	Antennas	Targets
2010/08/28-30	H, M, R, O, I, S	22 sources
2011/10/27, 28	Y, H, M, R, O, I, S	10 sources
2011/11/26	Y, U, H, M, R, O, I, S	4 sources

Y:Yamaguchi, U:Usuda, H:Hitachi, M:Mizusawa, R:Iriki, O:Ogasawara, I:Ishigaki, S:Shanghai

Observations in 2010 and 2011 for VLBI imaging as 1st epoch

- □ Array: EAVN □ Data: 2010/08, 2011/10,11 □ Beam: ~15 x 5 mas² □ σ_{image} : 30-60 mJy beam⁻¹
- \Box Vel. res.: 0.18 km s⁻¹

Date	Antennas	UV-coverage for	or G354.436-0.104	
2010/08/28-30	H, M, R, O, I,	S	22 sources	
2011/10/27, 28	Y, H, M, R, O, I, S		10 sources	
2011/11/26	Y, U, H, M, R,	0, I, S	4 sources	

Y:Yamaguchi, U:Usuda, H:Hitachi, M:Mizusawa, R:Iriki, O:Ogasawara, I:Ishigaki, S:Shanghai

Results_v1

 \sim Spatial morphology on VLBI images \sim

Ellipse: 6/35 (17%)

- **Fitted by ellipse**
- One clear ring
- □ Size : 100-4000 AU
- Gradient of LSR velocity

Arched: 2/35 (6%)

Not fitted by ellipse, rare case
Size: 500-3000 AU

Linear: 6/35 (17%)

- □ Distributed on a linear
- **Size:** 100-500 AU
- Gradient of LSR velocity

Pair: 7/35 (20%)

Isolated >1000 AU
 ~equal to size of a disk
 Size: 1500-85000 AU
 Individual YSOs

Complex: 14/35 (40%)

Difficult to classify
Size: 100-3500 AU
Wide LSR vel. range

Summary for VLBI images (Fujisawa et al. to be submitted soon)

	Ellipse	Arched	Linear	Pair	Complex
EAVN	6	2	6	7	14

□ 35 VLBI sources classified into five morphology

- Ellipse 6 (17%)
- Arched 2 (6%)
- Linear 6 (17%)
- Pair 7 (20%) : separated individual YSOs (>10000AU)
- Complex 14 (40%)

However, is it true ??

Spatial scale vs LSR vel. range

Spatial scale vs LSR vel. range

 $y = a x^{b}$: a=1.18 pm0.80, 0.25 pm0.09

Spatial scale vs LSR vel. range

Possibilities

□ Trigger of not simple Keplerian model

- 1. Resolved out : apparent spatial scale/morphology
- 2. + Expansion/infall : large velocity dispersion
- 3. Not associated disk basically

□ Response

- 1. Not VLBI, just interferometer obs.
- 2. Proper motion measurement
- 3. Proper motion measurement

Resolved out in our VLBI

Structure of each maser spot

Consists of core/halo components
 halo comp.(>100AU): resolved out on VLBI?

Verify spatial morphology without resolved out!

Projection plot of amplitude (Minier+ 02)

Results_v2

 \sim Comparison with the ATCA images \sim

ATCA obs.

Image credit: ATCA web-site

- □ date: 2012/02/11-14, 16-19
- Configuration: 6A & 1M-0.5k
 - Line: 1MHz with 2048 ch x IF8: ~ 0.022 km s⁻¹
- □ Freq.: 4.8-6.8, 8.0-10.0 GHz
- **D** Spatial res.: $\sim 2.0 \ge 1.5 \operatorname{arcsec^2} @6.7G$
- \Box Sensitivity:
 - Line : ~0.1 Jy/beam
- □ Target: 24 sources from EAVN sample
 - exclude around equatorial sources (-5 < Dec < 5 deg)

EAVN vs ATCA images e.g.) G2.536+0.198

Become to be clear for spatial scale/morphology

EAVN vs ATCA images e.g.) G2.536+0.198

Become to be clear for spatial scale/morphology

Complex => Ellipse e.g.) G8.832-0.028

Complex => Ellipse e.g.) G8.832-0.028

Pair => Linear e.g.) G12.889+0.489

Summary including ATCA images

	Ellipse	Arched	Linear	Pair	Complex
EAVN	6	2	6	7	14
EAVN*	5	1	2	5	11
ATCA	9	1	5	2	7

- □ Successful for detection of halo comp.
- □ Solved ambiguity morphology (Pair/Complex)
- □ Correct spatial scale / velocity range
- \square The best collaboration
 - Spatial scale/morphology: Connected array
 - Proper motion: VLBI

 $y = a x^{b}$: a = 6.95 pm 5.17, b = 0.04 pm 0.09

Possibilities

- **Trigger of not simple Keplerian model**
 - 1. Resolved out : apparent spatial scale/morphology
 - 2. + Expansion/infall : large velocity dispersion
 - 3. Not associated disk basically
- □ Response
 - 1. Not VLBI, just interferometer obs.
 - 2. Proper motion measurement
 - 3. Proper motion measurement

Results_v3

 \sim A part of proper motion measurements \sim

6.7 GHz methanol maser in G006.79-00.25

□ Elliptical spatial morphology in EAVN/ATCA

- Size ~2000 AU : typical disk size
- Vel. range ~16 km/s : wide, RVG in counter-clock
- Agreement of inclination estimated by IR-SED

EAVN monitor for G006.79-00.25

□date:

-2010/08/29, 2011/10/05, 2012/09/23

□ Sensitivity

- σ : 30-60 mJy beam⁻¹@1 hr
- Positional accuracy : ~0.1 mas

 \Box Velocity resol. : 0.18 km s⁻¹

Date	Stations	Synthesized beam
2010/08/29	M, R, O, I, H, S	7.4 x 2.9 mas ² , PA +3 deg
2011/10/05	M, R, O, I, Y, H	7.2 x 4.0 mas ² , PA - 9 deg
2012/09/23	M, R, O, I, Y, H, S	7.7 x 3.4 mas ² , PA -4 deg

Y:Yamaguchi, U:Usuda, H:Hitachi, M:Mizusawa, R:Iriki, O:Ogasawara, I:Ishigaki, S:Shanghai

Relative proper motion

 \square Detection:

- Multi-ch
- > 2 σ

clockwise

in 65 maser spots

 tangential: 1~18 km s⁻¹

 Not bipolar/spherical expansion
 Rotation in counter-

Rotation + Expansion/Infall for 3-D

□ Model

$$V_x^{\text{calc}} = V_{\text{rot}} \sin \theta + V_{\text{exp}} \cos \theta$$
$$V_y^{\text{calc}} = -(V_{\text{rot}} \cos \theta - V_{\text{exp}} \sin \theta) \cos i$$
$$V_z^{\text{calc}} = -(V_{\text{rot}} \cos \theta - V_{\text{exp}} \sin \theta) \sin i + V_{\text{sys}}$$

- Concentric distribution
- Motion on a plane

D Fitting

$$\chi^{2} = \sum_{j=1}^{N} w_{j} \Big((V_{xj} - V_{xj}^{\text{calc}})^{2} + (V_{yj} - V_{yj}^{\text{calc}})^{2} + (V_{zj} - V_{zj}^{\text{calc}})^{2} \Big)$$

Vrot=2.5, Vexp=4.2, Vsys=21.9 km/s Expansion dominance

Observation vs Model

Observation

Model

Concluding and Remarks

Conclusion

UVLBI monitor project using the JVN/EAVN

- Purpose: 3-D velocity structure, directly verification of the accretion scenario of HMSF
- Method: Making a catalog for VLBI image and proper motion of the 6.7 GHz methanol masers Systematically

□ Spatial scale/morphology

- Effected by resolved out
- Solved by the ATCA observations
- Large velocity dispersion
- **D** Proper motion measurement
 - Rotation + Expansion in elliptical source G006.79

Remarks

Problems

- Proper motion: systematically measurement
- Dust: Sub-millimeter continuum with ALMA
- Reflection: VLT/VLTI and/or TMT??
- Evolutionary phase: SED or Others??
- □ Next project
 - Increasing source samples using the JVN/EAVN, and also the APT !

► Advantage for the equatorial sources