Observational Studies of H₂O Maser Burst in Orion KL with ALMA and VERA

Tomoya Hirota (Mizusawa VLBI observatory, NAOJ)

Collaborators

Tomoya Hirota (NAOJ, VERA) Mi Kyoung KIM (KASI/NAOJ, VERA) Mareki HONMA (NAOJ, VERA) Yasutaka KURONO(NAOJ, ALMA) Masato TSUBOI (ISAS/JAXA) Kenta FUJISAWA (Yamaguchi University) Hiroshi IMAI (Kagoshima University) Tomomi SHIMOIKURA (Tokyo Gakugei University) Yoshinori YONEKURA (Ibaraki University)

Scientific topics

- Variability
 - The latest results of monitoring of H₂O maser burst in Orion KL with VERA and ALMA
 - Behaviors, patterns and periodicity of its flux variability
 - Simultaneous variability of sub-mm H₂O lines
- VLBI
 - Resolution of the structure of bursting maser features
 - Possible relation with disks and/or outflows
- Magnetism

Possible relation of magnetism with maser burst
 (e.g. Garay et al. 1989)

Orion KL region

- Nearest massive star-forming region
 - D=420 pc measured by VLBI astrometry
 - (Kim et al. 2008, Menten et al. 2007)
 - Complex structure of outflow/disk system (e.g. next talk)

H₂O maser flare/burst in Orion KL

- History of maser burst
 - 1979-1985 (Matveenko et al.1988, Garay et al. 1989, ...)
 - 1998 (Omodaka et al. 2004, Shimoikura et al. 2005, ...)
 - 2011 February (Tolmachev 2011); 13-year periodicity?
 - 1973 (Baudry et al. 1974) corresponding feature ~100 Jy
 - 1975-76 (Forster et al. 1978) no higher than ~500 Jy

Possible mechanism of maser burst

- Outflow/shock (Garay et al. 1989)
- Jet (Matveenko et al. 2004)
- Edge-on disk (Matveyenko et al. 1988)

VLBA/global VLBI mapping by Matveyenko (Demichev et al. 2009)

Possible mechanism of maser burst

- Overlapping model
 - Overlapping of two different clouds
 - (Deguchi et al. 1989, Shimoikura et al. 2005)

VLBA Mapping (Shimoikura et al. 2005)

Monitoring observations with VERA

• Aim

- Identify its powering source
- Reveal 3D velocity and spatial structure
- Investigate possible relation with star-formation activities
- Verify relationship with previous bursts, periodicity

Detail

- VERA 4 station
 - Beam size=1.7masX0.9mas
- Dual-beam astrometry
- Since Mar 09 2011
- See Hirota et al. (2011)

Flux monitoring

- Monitoring of total flux since 2008 (~once/month)
 - Peak~150kJy(~10¹⁴ K); far below previous bursts (<0.1)
 - Duration ~1.5yr; already finished? To be monitored

Phase-referenced images

- Multiple spatially distinct features
 - Significant change in structure, not a localized phenomenon for a single feature
 - Elongation along
 NW-SE as seen in
 previous bursts
 (Shimoikura et al. 2005,
 Demichev et al. 2009)

Proper motions

- Proper motions w.r.t. Source I (Goddi et al. 2011)
 - 10-20 km s⁻¹ toward S-W, almost parallel to outflow axis
 - Almost perpendicular to the elongation of maser features

Possible origin of the burst

Located at Compact Ridge as in previous bursts

- Proper motions along the low-velocity outflow axis (S~W)
- Explained by shock (Liu et al. 2002, Favre et al. 2011)
- Source I or another YSO? (SMM1, Zapata et al. 2011)

Follow-up by ALMA cycle 0

• Aim

- Identify the powering source
- Investigate multi-transitions from centimeter to submillimeter
- Details
 - Extended configuration (~0.5" beam)
 - Continuum emission at band 6/7
 - Tsys~100 K@B6, 150K@B7
 - On-source 30s (total 20min)
 - Spectral line at band 7
 - Tsys~150-200 K@B7
 - On-source 100s (total 20min)

Array configuration

Continuum emission

- Coincident with continuum peak in Compact Ridge
 - Zapata et al. (2009) SMM1
 - Favre et al. (2011) MF1/Cb1
 - To be studied with SED at

ALMA bands 6, 7, and 9

Band 7 (330 GHz) continuum superposed on the Subaru image (Okumura et al. 2011)

The 321 GHz H₂O maser

- One of the bright submillimeter masers with higher excitation energy (Menten et al. 1990)
- Detected even in the longest baselines

The 321 GHz H₂O maser

Confusion with other molecular lines
 – HCOOCH₃ are dominant in Hot Core and Compact Ridge

The 321 GHz H₂O maser

 But, no strong 321 GHz maser in Compact Ridge – HCOOCH₃ are resolved out, only Source I unresolved

(Sub)millimeter H₂O in Source I

- The 321 GHz H₂O line is detected in Source I
 - Compact, unresolved with ~0.5" beam
 - Analogous to SiO masers (next talk, Kim et al. 2008, Goddi et al. 2009, etc)
 - See Hirota et al. (2012) for the 232 GHz vibrationally excited lines observed by ALMA Science Verification

Multi-transition analysis

- Photon luminosity ratio (Neufeld & Melnick 1990)
 - Good probe of H₂O abundance, density, velocity gradient, and/or temperature
 - e.g. $L_{22}/L_{321} = 5-150$ (W3, W49, W51; Menten et al. 1990)
 - At least one of the following condition would be required
 - Low temperature (<400 K)
 - High density (>10^{9.5} cm⁻³)
 - High H_2O abundance (>10^{-4.5})
 - Small velocity gradient/width
 - Long path length

Summary

- The 22 GHz H₂O maser burst in Orion KL has been observed with VERA.
- Positions, structures, and proper motions of bursting features could be explained by interaction with the shocked gas and ambient cloud in the Compact Ridge.
- Physical properties of host cloud core and masing clump will be investigated with new ALMA data.
- Future multi-transition observations of masers with VLBI and ALMA will be powerful tools to explore physical and dynamical properties of MYSOs.