Water Maser Bipolar Outflow Associated SMA1 Massive Young Stellar Object of NGC 6334I(N)

James O. Chibueze East Asian ALMA Regional Center, National Astronomical Observatory of Japan.

Collaborators:

Imai, H., Omodaka, T., Handa, T., Nagayama, T., Sunada, K., Nakano, M., Hirota, T., & Kamezaki, T.

A Neapolitan of Masers: Variability, Magnetism and VLBI 20 - 22 May 2013

NGC 6334I(N) - Introduction

* The youngest region of the Cat Paw nebula. (earliest phase of MSF)

* At a distance of ~1.7 kpc (~1.2 kpc based on our trigonometric parallax results)

- * Associated with CH₃OH and H₂O masers (Buether et al. 2005)
- * Associated with shocked gas (Persi et al. 2005)

* Estimated total mass of ~ 2200 M_{\odot} (Hunter et al. 2006)

Composite image of NGC 6334 in the mid-infrared. MSX bands A (8.3 μ m), D (14.7 μ m) and E (21.3 μ m). The radio HII regions and mid- and far-infrared sources are labeled according to the adopted identification.

Motivation: Based on Brogan et al. (2009)

SMA 1.3 mm continuum objects, SMA 1-7, some associated with H_2O masers detected with VLA (blue crossses and arrows pointing to their spectra)

Brogan et al. (2009)

Observations

Japanese VLBI Network (JVN) Observations K-band, ~ 22GHz Target source: NGC 6334I(N) Phase reference source: J1713-3418 Bandpass calibrator: NRO530 Number of epochs: 10 From February, 2010 ~ April, 2012 Angular resolution: 1.2 mas at 22 GHz Velocity resolution: 0.21 km/s

Data Reduction/Analysis

* Standard AIPS data reduction procedure, Self-calibration (relative position of maser features wrt the bright maser spot)

* Normal phase referencing (to obtain the absolute position of the reference maser spot, in order to compare with VLA continuum map).

* Maser maps, and proper motion identification (identified in 3 or more epochs and some in 2 epochs for cases of velocity or position isolation)

С

J2000 Declination

papers (Rodriguez et al. 2007: dashed line across SMA1b)

Position/Velocity Variance and Covariance Matrix Analysis

$$\sigma_{ij} = \frac{1}{N-1} \sum_{n=1}^{N} (v_{i,n} - \bar{v_i}) (v_{j,n} - \bar{v_j}),$$

(Bloemhof 1993)

(1954.95	977.10	-159.08		(2878.83	0	0)
	977.10	1773.24	-276.15	\Rightarrow	0	894.16	0
	-159.08	-276.15	115.64 /)	0	0	70.85

PVCM

$\psi_{ m max}$ [mas 2]		$\psi_{ m min}$ [mas 2]		$PA_{\max}^{1}[^{\circ}]$		
11689.92		1104.00		-2.7		
VVCM						
$\psi_{ m max}$	$\psi_{ m mid}$	ψ_{\min}	$\mathrm{PA}_{\mathrm{max}}$	$\mathrm{PA}_{\mathrm{mid}}^2$	$\phi_{ m max}{}^3$	$\phi_{ m mid}$
$[{\rm km}^2~{\rm s}^{-2}]$	$[\rm km^2 \ s^{-2}]$	$[{\rm km}^2~{\rm s}^{-2}]$	[°]	[°]	[°]	[°]
2878.83	894.16	70.85	44.4±6.7	44.7±4.9	-6.3±0.6	-6.7±5.2

Expanding flow model of the maser spatio-kinematics

$$S^{2} = \frac{1}{3N_{\rm m} - N_{\rm p}} \sum_{i}^{N_{\rm m}} \left\{ \frac{\left[\mu_{ix} - w_{ix}/(a_{0}d)\right]^{2}}{\sigma_{\mu_{ix}}^{2}} + \frac{\left[\mu_{iy} - w_{iy}/(a_{0}d)\right]^{2}}{\sigma_{\mu_{iy}}^{2}} + \frac{\left[u_{iz} - w_{iz}\right]^{2}}{\sigma_{u_{iz}}^{2}} \right\}$$

(Least-square method involving Levenburg-Marquart minimization technique)

 N_p : number of free parameters (= 4) N_m : number of proper motion data (= 23)

$$\boldsymbol{w_i} = \boldsymbol{V_0} + V_{\exp}(i) \frac{\boldsymbol{r_i}}{r_i},$$

Assumption: Each maser feature is radially moving away from a common originating point (near 0,0) of the outflow with V_{exp} (i).

Radial expanding motion of maser feature

$$V_{\exp}(i) = \frac{(u_{ix} - v_{0x})r_{ix} + (u_{iy} - v_{0y})r_{iy} + (u_{iz} - v_{0z})z_{iz}}{r_i}$$

Derived Expansion Velocity of Individual Maser Features

Most of the expansion velocities were positive as espected, 4 negative expansion velocity could be as a result of infall, turbulence or some error in the model fitting.

Summary

1. We detected outflow activity in SMA1b, indicating that this source is internally excited by a massive young stellar object.

2. The bipolar motions of the H2O masers indicate the presence of a YSO-jet system in SMA1b.

4. ALMA & EVLA observations will be helpful to explore the physical conditions of this object.