Water Maser Bipolar Outflow Associated SMA1 Massive Young Stellar Object of NGC 6334I(N)

James O. Chibueze
East Asian ALMA Regional Center, National Astronomical Observatory of Japan.

NGC 6334I(N) - Introduction

* The youngest region of the Cat Paw nebula. (earliest phase of MSF)
* At a distance of $\sim 1.7 \mathrm{kpc}$ ($\sim 1.2 \mathrm{kpc}$ based on our trigonometric parallax results)
* Associated with $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ masers (Buether et al. 2005)
* Associated with shocked gas (Persi et al. 2005)
* Estimated total mass of $\sim 2200 \mathrm{M}_{\odot}$ (Hunter et al. 2006)

G351.02+0.65
Composite image of NGC 6334 in the mid-infrared. MSX bands A $(8.3 \mu \mathrm{~m}), \mathrm{D}$ $(14.7 \mu \mathrm{~m})$ and $\mathrm{E}(21.3 \mu \mathrm{~m})$. The radio HII regions and mid- and far-infrared sources are labeled according to the adopted identification.

Motivation: Based on Brogan et al. (2009)

SMA 1.3 mm continuum objects, SMA 1-7, some associated with $\mathrm{H}_{2} \mathrm{O}$ masers detected with VLA (blue crossses and arrows pointing to their spectra)

Brogan et al. (2009)

Observations

Japanese VLBI Network (JVN) Observations
K-band, ~ 22GHz
Target source: NGC 6334I(N)
Phase reference source: J1713-3418
Bandpass calibrator: NRO530
Number of epochs: 10
From February, 2010 ~ April, 2012
Angular resolution: 1.2 mas at 22 GHz
Velocity resolution: $0.21 \mathrm{~km} / \mathrm{s}$

Data Reduction/Analysis

* Standard AIPS data reduction procedure, Self-calibration (relative position of maser features wrt the bright maser spot)
* Normal phase referencing (to obtain the absolute position of the reference maser spot, in order to compare with VLA continuum map).
* Maser maps, and proper motion identification (identified in 3 or more epochs and some in 2 epochs for cases of velocity or position isolation)

A: SMA 1.3 mm continuum (solid lines), VLA 7 mm continuum of SMA 1a-d and VLA3 (grey scale and solid lines)

B: VLA 1.7 mm continuum (solid lines), 3.6 cm continuum (dashed lines), 1.3 cm continuum (gray scale), $\mathrm{CH}_{3} \mathrm{OH}$ masers (yellow ellipse), $\mathrm{H}_{2} \mathrm{O}$ masers (colored crosses)

C : $\mathrm{JVN} \mathrm{H}_{2} \mathrm{O}$ maser map (top), superposed image of the maser distribution in SMA1b on it 1.3 cm VLA continuum map (bottom)

Position/Velocity Variance and Covariance Matrix Analysis

$$
\sigma_{i j}=\frac{1}{N-1} \sum_{n=1}^{N}\left(v_{i, n}-\bar{v}_{i}\right)\left(v_{j, n}-\bar{v}_{j}\right)
$$

(Bloemhof 1993)

$$
\left(\begin{array}{ccc}
1954.95 & 977.10 & -159.08 \\
977.10 & 1773.24 & -276.15 \\
-159.08 & -276.15 & 115.64
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc}
2878.83 & 0 & 0 \\
0 & 894.16 & 0 \\
0 & 0 & 70.85
\end{array}\right)
$$

PVCM

$\psi_{\max }\left[\mathrm{mas}^{2}\right]$	$\psi_{\min }\left[\mathrm{mas}^{2}\right]$	$\mathrm{PA}_{\max }{ }^{1}\left[{ }^{\circ}\right]$
11689.92	1104.00	-2.7

VVCM

$\psi_{\max }$	$\psi_{\operatorname{mid}}$	$\psi_{\min }$	$\mathrm{PA}_{\max }$	$\mathrm{PA}_{\operatorname{mid}}{ }^{2}$	$\phi_{\max }{ }^{3}$	$\phi_{\operatorname{mid}}$
$\left[\mathrm{km}^{2} \mathrm{~s}^{-2}\right]$	$\left[\mathrm{km}^{2} \mathrm{~s}^{-2}\right]$	$\left[\mathrm{km}^{2} \mathrm{~s}^{-2}\right]$	$\left[{ }^{\circ}\right]$	$\left[{ }^{\circ}\right]$	$\left[{ }^{\circ}\right]$	$\left[{ }^{\circ}\right]$
2878.83	894.16	70.85	44.4 ± 6.7	44.7 ± 4.9	-6.3 ± 0.6	-6.7 ± 5.2

Expanding flow model of the maser spatio-kinematics

$$
S^{2}=\frac{1}{3 N_{\mathrm{m}}-N_{\mathrm{p}}} \sum_{i}^{N_{\mathrm{m}}}\left\{\frac{\left[\mu_{i x}-w_{i x} /\left(a_{0} d\right)\right]^{2}}{\sigma_{\mu_{i x}}^{2}}+\frac{\left[\mu_{i y}-w_{i y} /\left(a_{0} d\right)\right]^{2}}{\sigma_{\mu_{i y}}^{2}}+\frac{\left[u_{i z}-w_{i z}\right]^{2}}{\sigma_{u_{i z}}^{2}}\right\}
$$

(Least-square method involving Levenburg-Marquart minimization technique)
N_{P} : number of free parameters $(=4)$
N_{m} : number of proper motion data $(=23)$

$$
\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{V}_{\mathbf{0}}+V_{\exp }(i) \frac{\boldsymbol{r}_{\boldsymbol{i}}}{r_{i}}
$$

Assumption: Each maser feature is radially moving away from a common originating point (near 0,0) of the outflow with $\mathrm{V}_{\text {exp }}(\mathrm{i})$.

Radial expanding motion of maser feature

$$
V_{\text {exp }}(i)=\frac{\left(u_{i x}-v_{0 x}\right) r_{i x}+\left(u_{i y}-v_{0 y}\right) r_{i y}+\left(u_{i z}-v_{0 z}\right) z_{i z}}{r_{i}}
$$

Derived Expansion Velocity of Individual Maser Features

Most of the expansion velocities were positive as espected, 4 negative expansion velocity could be as a result of infall, turbulence or some error in the model fitting.

Summary

1. We detected outflow activity in SMA1b, indicating that this source is internally excited by a massive young stellar object.
2. The bipolar motions of the H 2 O masers indicate the presence of a YSO-jet system in SMAlb.
3. ALMA \& EVLA observations will be helpful to explore the physical conditions of this object.
