Thoughts on the origin and mechanisms of periodic masers

Johan van der Walt

Centre for Space Research, North-West University, Potchefstroom Campus, Potchefstroom, South Africa

21 May 2013

・ 同 ト ・ ヨ ト ・ ヨ ト

Less than two hands full of methanol maser sources that show periodic-like or regular changes in observed maser flux density.

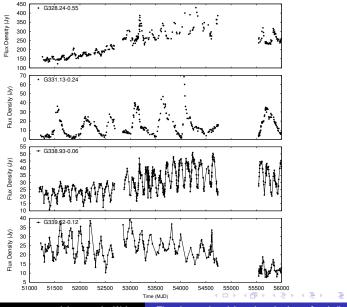
Some questions about the periodic masers:

- What drives the periodicity? Stellar pulsations, binary system?
- What is affected by the driving mechanism, the masing region or background?
- Are there different "types" of periodic/regular varying masers?
- What can we learn about the star formation environment from these masers?
- Can we see the same behaviour in other masing species and what does it mean?

・ 同 ト ・ ヨ ト ・ ヨ ト

Name	Methanol	OH	Other	Period	Authors
				(days)	
G9.62+0.20E	\checkmark			243	Goedhart et al.
G12.89+0.49	\checkmark			29.5	Goedhart et al.
G22.357+0.066	\checkmark			179	Szymczak et al
G37.55+0.20	\checkmark		H_2CO	237	Araya et al
		6.035		?	Al-Marzouk et al
G188.95+0.89	\checkmark			404	Goedhart et al.
G328.24-0.55	\checkmark			220	Goedhart et al.
G331.13-0.24	\checkmark			504	Goedhart et al.
G338.93-0.06	\checkmark			133	Goedhart et al.
G339.62-0.12	\checkmark			201	Goedhart et al.

(4回) (注) (注) (注) (注)


Examples of 6.7 GHz light curves

Johan van der Walt

Thoughts on the origin and mechanisms of periodic masers

Examples of 6.7 GHz light curves

Johan van der Walt

Thoughts on the origin and mechanisms of periodic masers

Basic relation:

$$I_m(t) = I_0(t) e^{-\tau(t)}$$

Sobolev et al (1998) to study effect of turbulence on maser spectra:

$$T_m(y,z) = T_{bg} e^{\tau_0 f_m(y,z)}$$

伺い イヨト イヨト

Mechanism	$\tau_m(t)$	$I_0(t)$
Orbiting circumstellar dust features	\checkmark	
Spiral density waves	\checkmark	
Stellar pulsations	\checkmark	\checkmark
Circumstellar matter in accreting binary	\checkmark	
Precessing jet	\checkmark	?
CWB	\checkmark	\checkmark

<回と < 目と < 目と

• Majority of the suggestions is that periodic masers are due to $\tau_m(t)$

回 と く ヨ と く ヨ と

- Majority of the suggestions is that periodic masers are due to $\tau_m(t)$
- However, how does $\tau_m(t)$ depend on $T_d(t)$ for different masing transitions? How should we interpret the data?

向下 イヨト イヨト

- Majority of the suggestions is that periodic masers are due to $\tau_m(t)$
- However, how does $\tau_m(t)$ depend on $T_d(t)$ for different masing transitions? How should we interpret the data?
- Correlated variability of two different maser species ⇔ the excitation mechanism of the two maser species must be similar.

伺下 イヨト イヨト

- Majority of the suggestions is that periodic masers are due to $\tau_m(t)$
- However, how does $\tau_m(t)$ depend on $T_d(t)$ for different masing transitions? How should we interpret the data?
- Correlated variability of two different maser species ⇔ the excitation mechanism of the two maser species must be similar.
- However, does correlated variability imply that the variability must necessarily be related to changes in τ_m (the excitation) ?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Majority of the suggestions is that periodic masers are due to $\tau_m(t)$
- However, how does $\tau_m(t)$ depend on $T_d(t)$ for different masing transitions? How should we interpret the data?
- Correlated variability of two different maser species ⇔ the excitation mechanism of the two maser species must be similar.
- However, does correlated variability imply that the variability must necessarily be related to changes in τ_m (the excitation) ?
- What properties of the flaring can be used to perhaps distinguish whether the origin of the periodic/regular flaring/variability lies in $I_0(t)$ or in $\tau_m(t)$?

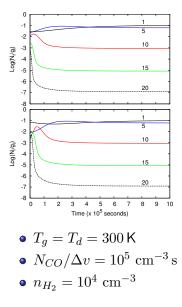
소리가 소문가 소문가 소문가

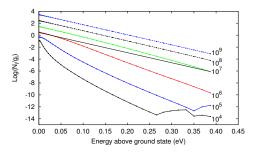
Time dependent calculation of level populations

回 と く ヨ と く ヨ と

Time dependent calculation of level populations

The Rate Equations

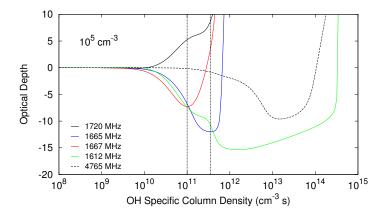

$$\frac{dN_i}{dt} = \sum_{j < i} \left[\left(-N_i + \left(\frac{g_i}{g_j} N_j - N_i \right) W \mathcal{N}_{ij} \right) \beta_{ij} A_{ij} \right. \\ \left. + C_{ij} \left(N_j \frac{g_i}{g_j} e^{-E_{ij}/kT} - N_i \right) \right] \\ \left. + \sum_{j > i} \left(N_j + \left(N_j - \frac{g_j}{g_i} N_i \right) W \mathcal{N}_{ji} \right) \beta_{ji} A_{ji} \right. \\ \left. + C_{ji} \left(N_j - N_i \frac{g_j}{g_i} e^{-E_{ji}/kT} \right) \right] \tag{1}$$


$$I_d(\nu) = \left(\frac{\nu}{\nu_0}\right)^p B_\nu(T); \quad \beta_{ji} = \frac{1 - e^{\tau_{ji}}}{\tau_{ji}}$$
$$\tau_{ji} = \frac{A_{ji}}{8\pi} \left(\frac{c}{\nu_{ji}}\right)^3 \left(\frac{g_j}{g_i}x_i - x_j\right) \frac{N_{mol}}{\Delta v}$$

Johan van der Walt Thoughts on the origin and mechanisms of periodic masers

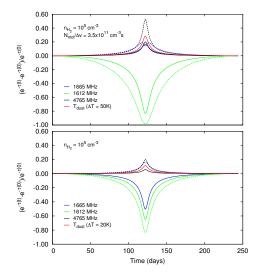
<ロ> (四) (四) (日) (日) (日)

Testing on CO



▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

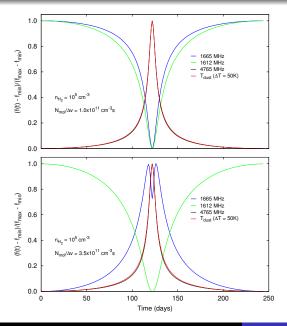

•
$$T_g = T_d = 300 \text{ K}$$

• $N_{CO}/\Delta v = 10^5 \text{ cm}^{-3} \text{ s}$

Example of pumping calculation for OH

 $\begin{array}{ll} \mbox{Only 24 levels taken from the LAMDA} & T_g = 50 \ \mbox{K} \\ \mbox{Collisions with ortho- and para-H}_2 & T_d = 175 \ \mbox{K} \\ \mbox{Line overlap following Elitzur \& Netzer.} & W = 0.1 \\ \mbox{At present only for the 53 } \mu m \ \mbox{line} & p = 2_{\rm F}, \ \mbox{K} = 1.5 \ \mbox{K} \\ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} \\ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} \ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} \ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} = 1.5 \ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} = 1.5 \ \mbox{K} = 1.5 \ \mbox{K} \ \mbox{K} = 1.5 \ \mbox{$

Time dependent T_d


Top panel: Solid: $\Delta T_d = 20 \text{ K}$ Dashed: $\Delta T_d = 50 \text{ K}$ $T_d(0) = 175 \,\mathrm{K}$ $T_{a} = 50 \, {\rm K}$ W = 0.1p=2Bottom panel: $\Delta T_d = 20 \,\mathrm{K}.$ Solid: $N/\Delta v = 10^{11}$

Dashed: $N/\Delta v = 3.5 \times 10^{11}$

(《圖》 《문》 《문》 - 문

Note small values of relative amplitudes!

Normalized profiles

- For OH: Flare profiles for different transitions do not necessarily reflect $T_d(t)$
- For OH: The masing transitions respond in different ways to changes in pumping radiation field. ie. flare profiles are not the same.
- Would require extreme fine tuning to have the same flare profiles for the different transitions

Johan van der Walt

Thoughts on the origin and mechanisms of periodic masers

- 4 回 2 - 4 回 2 - 4 回 2

Is the periodic/regular flaring due to changes T_d (as is suggested in many cases)?

Extrapolate the result for OH to other molecules:

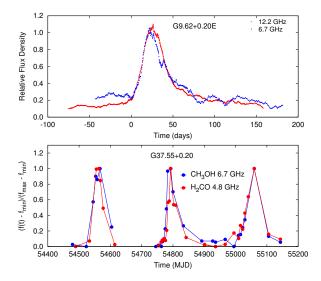
Is the periodic/regular flaring due to changes T_d (as is suggested in many cases)?

Extrapolate the result for OH to other molecules:

• We do not expect the population inversion (τ_m) of different masing transitions of the same or different molecules to necessarily behave in exactly the same way when T_d varies.

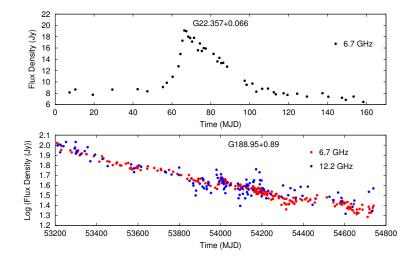
Extrapolate the result for OH to other molecules:

- We do not expect the population inversion (τ_m) of different masing transitions of the same or different molecules to necessarily behave in exactly the same way when T_d varies.
- Masers from different transitions and/or different molecules having the same flare profile seems not to be the rule but the exception ("fine tuning") and *may* point to changes in I_o rather than in τ_m .


・ 同 ト ・ ヨ ト ・ ヨ ト

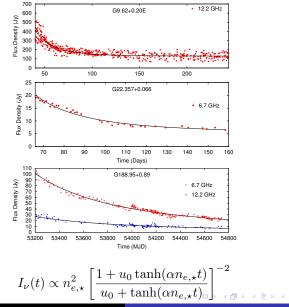
Extrapolate the result for OH to other molecules:

- We do not expect the population inversion (τ_m) of different masing transitions of the same or different molecules to necessarily behave in exactly the same way when T_d varies.
- Masers from different transitions and/or different molecules having the same flare profile seems not to be the rule but the exception ("fine tuning") and *may* point to changes in I_o rather than in τ_m .
- Masers with the same type of flare profile are *most likely* driven by the same underlying process (Szymczak et al., 2010)


(本間) (本語) (本語)

<->
</>
</>
</>
</>
</l>

* 臣


æ

э

æ

G9.62+0.20E, G22.357+0.066 & G188.95+0.89

Johan van der Walt

Thoughts on the origin and mechanisms of periodic masers

э

Is the periodic flaring due to changes T_d only? Conclusions

- G9.62+0.20E, G22.357+0.066 and G37.55+0.20 have similar flaring characteristics suggesting the same mechanism underlies the flaring.
- The decays of the 6.7 and 12.2 GHz maser flares in G9.62+0.20E and the 6.7 GHz maser in G22.357+0.066, as well as the <u>1600</u> day decay of the 6.7 and 12.2 GHz masers in G188.95+0.89 can be explained in terms of the recombination of a thermal hydrogen plasma. G37.55+0.20 need more data.
- G9.62+0.20E, G22.357+0.066 (see poster) as well as periodicity in G188.95+0.89 (van der Walt, 2011) *can* be explained within the framework of a CWB. G37.55+0.20 need more data.
- G338.93-0.06, G339.62-0.12 are complex while G12.89+0.49 has a very short period. Would be very difficult to explain with a CWB scenario. Uncertain about G328.24-0.55 and G331.13-0.24.
- Multi-transition monitoring necessary!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Whether you prefer $I_0(t)$ or $\tau_m(t)$, there must be a plausible physical mechanism.
- Whether you prefer $I_0(t)$ or $\tau_m(t)$, you must be able to explain the flare profile not only the period.
- Whether you prefer $I_0(t)$ or $\tau_m(t)$, you have to consider the energetics of the system. For example, in the case of the CWB model: can the shocked gas produce enough ionizing photons to explain required changes in the electron density at the ionization front. Can it produce the required changes in T_d ? But where are the masers located?? L_{star} \gg L_{wind} \gg L_{shock}

daimontribe.deviantart.com

æ