
Copyright © AARNet, 2004

aarnet
Australia's Academic
and Research Network

Large file transfers using TCP

4th e-VLBI workshop, 2005-07-12
Australia Telescope National Facility, Marsfield

Glen Turner



→AARNet’s links to overseas research networks



→Topics

• Tuning TCP for long fat pipes

• Exotic TCP

• Hardware choices



→1. Tuning TCP for long fat pipes

• Two tasks

–Reserving buffer memory

–Enabling TCP features



→Reserving buffer memory

• TCP’s Window is the amount of unacknowledged data in the 
pipe

• The window size is a measure of throughput, since
throughput = window ÷ round trip time

and round trip time is reasonably constant for a connection

• We need enough buffer to feed a fully opened window, 
otherwise throughput will drop



→Calculating buffer memory

• We desire
tcp throughput = link bandwidth

and
 window = congestion window

Since
tcp throughput = window ÷ round trip time

We get
congestion window = bandwidth × round trip time

• This result is so important it has a name
bandwidth–delay product



→Estimating the bandwidth–delay product

• We know the smallest link in the path is 1Gbps

• Estimate round-trip time using ping

• Calculate bandwidth–delay product
1,000,000,000bps ÷ 8 × 0.324s = 39MiB

–This 80MB is of kernel memory: it doesn’t swap

• The bandwidth–delay product is linear

–In the above example, 800MB for 10Gbps

$ ping -s 9000 -M dont www.geant.net
PING newweb.dante.net (62.40.101.34) 9000(9028) bytes of data.
9008 bytes from www.dante.net (62.40.101.34): icmp_seq=0 ttl=49 time=324 ms
9008 bytes from www.dante.net (62.40.101.34): icmp_seq=1 ttl=49 time=324 ms
9008 bytes from www.dante.net (62.40.101.34): icmp_seq=2 ttl=49 time=324 ms



→Configuring buffer in Linux

• Edit /etc/sysctl.conf

• Increase maximum allowable socket buffers
net.core.wmem_max = 40500000
net.core.rmem_max = 40500000

• Increase TCP buffers
net.ipv4.tcp_wmem = 4096 65536 40500000
net.ipv4.tcp_rmem = 4096 87380 40500000

• Automate buffer tuning
net.ipv4.tcp_moderate_rcvbuf = 1

• Allowing a large buffer doesn’t allocate a large buffer until it is 
needed

• Best documentation is in the Web100 kernel patch file 
README.web100



→Configuring buffer in Windows Xp

• Registry settings
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]

• Increase window size
GlobalMaxTcpWindowSize 40500000
TcpWindowSize 40500000



→Operating system defaults are woeful

• Windows Xp 8KB

–10Mbps ethernet

–Dial-up

• Linux 32KB

–100Mbps ethernet

–3Mbps ADSL



→2. Tuning TCP features - TCP operation

• TCP lifetime

–Slow start to discover path bandwidth (the ‘window’ of 
packets which can be on the wire)

• Additive increase

–Incoming Acks form an “ack clock” of timestamp samples 
of the round-trip time

• Small modifications to window

• Congestion appears as loss

–Reduce window

• Multiplicative decrease, important for stability

–Re-enter slow start



→Enabling TCP features – Window scaling

• Recall that the window controls the throughput of the 
connection. The window field in the TCP header is 16 bits.

• Window scaling

–window = 2n × window in TCP header

• n = 7 for fat pipe transfers

• Linux

–Window scaling is on by default

–n = 2 by default in recent kernels, because stupid ADSL 
routers broke

–So
net.ipv4.tcp_adv_win_scale = 7



→Enabling TCP features - Timestamps

• A timestamp and timestamp echo is added to the TCP header 
so that the round-trip time can be more accurately estimated

• So the Ack clock which controls transmission is more 
accurate and thus bandwidth increases

• Linux

–On by default

• Windows, off by default
Tcp1323Opts 3



→
Enabling TCP features – Selective 
Acknowledgement

• SACK allows individual segments to be Acknowledged

–One segment loss doesn’t lead to invalidation of all later 
data in the pipe

• This leads to a more complex data structure in sender and 
receiver, so important to test that throughput is sustained



→Enabling IP features – MTU

• Maximum transfer unit is the largest packet size on the path

• Usually 1500

• Need 9000 (jumbo frames) to have a hope at 10Gbps

–Mathis’ formula sets 4Gbps upper bound on 1500 bytes 
frames

–Avoid oversubscribing reciever CPU

–Neterion testing

• Quad Opteron uses 30% of CPUs for TCP input 
processing with 10Gbps and 9000 byte frames

• Fails to clear I/O buffers at 1500 byte frames



→Enabling IP features – Explicit congestion notification

• Mechanism to differentiate loss and congestion

• Congestion has an unavoidable multiplicative decrease if 
Internet is to avoid congestion collapse

• Loss has no implication for stability, so missing frame can be 
retransmitted and throughput preserved

• TCP Reno also re-enters slow start



→IP features – Router queuing – Fair queuing

• Router should maintain illusion that TCP flow is the only flow 
on the path

• As large falls in available bandwidth hurt throughput

• Fair queuing



→IP features – Router queuing – RED

• Synchronisation

–Congestion is a shared event

–Leads to oscillation

–TCP doesn’t dampen this as well as possible

• Random early drop an attempt to limit synchronisation



→Network design

• Ack compression

–Ack clock distorted

–Long queues are bad

• Asymmetric path

–Ack clock causes transmit at wrong time

–May not be enough bandwidth for Ack back-channel

• 1Gbps: 2Mbps @ 9000

• 1Gbps: 6Mbps @ 1500

• 10Gbps: 20Mbps @ 9000



→What’s still wrong with TCP?

• Sawtooth-shaped throughput as increases in throughput are 
probed

–Poor burstiness control

• Recovery from congestion takes a very long time’

• Slow start is very slow

–Additive increase

–Takes a long time to count to 10Gbps

• 70min at 7.5Gbps



→Exotic TCP

• “TCP compatible”

–Implements congestion control

• “TCP friendly”

–... and is fair to TCP flows on the same links



→Optimising Reno TCP

• Use window scale, timestamps and explicit congestion 
notification options

–Set window scale for 10Gbps

• Test performance of Selective Acknowledgment

–Complex data structure at receiver

• Set buffer to bandwidth-delay product

–Hopefully automatically

• Use large MTU

• Have zero loss, looking at about 10-13 for undersea links



→BIC-TCP

• Slow start wastes a lot of probes to find bandwidth

• We could do a binary search with those probes

–Half are wasted, but that’s still better than slow start

• When close logarithmically (ie, slowly) approach target 
bandwidth

–Avoid sawtooth

• On congestion revert to previous binary search low value and 
re-probe new bandwidth

–Multiplicative decrease but rapid recovery if bandwidth 
unchanged (ie, late Ack arrival was loss)

•



→Experience with BIC

• TCP compatible

• TCP friendly except at dial-up speeds

–Not a real-life problem as few dial-ups connect more than 
one host

• Default in recent Linux kernels

–No one noticed :-)



→FAST TCP

• Not only an implementation, but an architectural renovation

• Independent algorithms for

–loss recovery

–window control (RTT timescale)

–burstiness control (sub-RTT)

• Unlike TCP which conflates them, making improving any one 
of them difficult

• Not finished

–Not yet TCP friendly

–Does not yet discover increased bandwidth



→FAST congestion control

• Based on queuing delay rather than loss

–A continuum, so more data for decisions than loss’s 
binary value

–So less inclined to oscillate

• Equation based

–So same algorithm used in bandwidth discovery as used 
in steady state operation

–Explicit recognition that we are seeking an equilibrium of 
flow dynamics



→FAST window control

• Returning Acks maintain a smoothed estimate of queuing 
delay and a loss indicator

• Window is set by equation which updates window based on 
bounded proportion of change of RTT estimate

–Estimates distance from equilibrium and if close makes 
only small changes to window size



→Competing efforts to FAST

• FAST have a software patent

• Which they are not making royalty-free

• So won’t be in Linux, or perhaps even Windows

• Interest in similar renovations with no patent claims



→Others

• HDTCP and STCP

–These both have differing gain functions then standard 
TCP

–Making response to congestion more rapid

–Allowing a closer estimate of the link bandwidth

–But have all the other problems of TCP

• Westwood TCP

–Uses incoming Acks to estimate packet rate and initialise 
slow start settings upon loss

–Good for lossy environments like WLANs



→Web100 www.web100.org



→Ethereal



→MRTG, rrdtool, drraw and NetSNMP



→System considerations



→Fundamental limitation

• Latency

–Hard to get over speed of light

–Major limitation to distributed computing



→Software

• Run recent kernel

–So cutting edge Linux distribution

• Fedora Core

• Debian unstable or Ubuntu

–Or Windows Longhorn beta

• Released at various Microsoft “partner” events

• Apply the Web100 patches

• Acknowledge that the load is on the receiver

–Even so, a good candidate for data reformatting

• But the sender can only send unaltered bytes from disk

–sendfile() - Apache actually sends bulk data fast



→CPU

• AMD Opteron, for the next two years until Intel get their act 
together

• Large MTU reduces the number of packets processed by the 
TCP receiver

• PCI bus

–PCI-X 1.0 7.5Gbps

–PCI-X 2.0 10Gbps



→Disk drives

• SATA disk runs at 1.5Gbps
SATA II disk runs at 3.0Gbps

• SAS runs over SATA link layer

• Native command queuing is a huge win for servers, but not 
for one single process doing a sequential read

• Speed/capacity/physical size trade-off

–7200RPM 3.5in is about 180GB

–15000RPM 2.5in is about 72GB

• Form factor is about to move to 2.5in, that is 60TB per rack

–Implications for power density in computer room

–Implications for connect technologies

• Need to ensure disk runs at full rate (acoustics)
hdparm -M 254 /dev/...



→IDE versus SCSI

• Now SATA II versus SAS

• SATA II was designed to better SCSI/SAS

• Somewhat pointless, since manufacturers are using SAS v 
SATA to segment the marketplace into server and client

–Except for Western Digital



→Disk attach

• No obvious winner

–Fiber Channel is slow

–SATA can be switched, but no product

–iSCSI has a lot of overhead

–ATAoE looks attractive, but is there enough CPU to run 
this, the TCP stack and the disk subsystem?



→Ethernet adapters

• Features: checksumming, TSO, interrupt coalescing, lots of 
buffer, jumbo frames

• 1Gbps Intel Pro/1000 Server MT

• 10Gbps Neterion (was S2IO) Xframe II

• State-full TCP offload adapters are not really suitable for this 
task, since these cannot take advantage of high performance 
variants of TCP protocols

–Chelsio T210

• Duds: RealTek 8110- and 8160-series of GbE NiCs, early 
Intel GbE NICs



→Disk subsystems

• A single SATA II or SAS15,000RPM disk will do about 
750Mbps sustained

–Noting that throughput varies across the disk

• So we need to write to multiple disks simultaneously to 
improve the throughput

• RAID0 striping

• RAID1 + RAID0 striping and mirroring

• A very good RAID5 

–And most RAID5 controllers are poor



→End


