
3D ISM-Shock Spectral Emission Models

Thermal Cooling in Inhomogeneous ISM Simulations

Ralph Sutherland
RSAA, ANU, ANITA



Cooling in the ISM

Astrophysical plasmas cool in a highly non-linear fashion.

In general, the cooling may be dynamically unimportant, or
a significant part of the energy budget.

Calculation of the ISM plasma cooling is performed in a
range of degrees of complexity and a㏄uracy depending on
the purpose of the calculations.



Cooling in the ISM

Geometry and Radiative Transfer may
strongly affect the outcome.

The Interstellar Medium is *NOT* uniform, in
density or velocity.

When dynamical and thermal timescales are
coupled, and turbulent structres are important,
then time dependent 3D inhomogeneous
models are necessary.



Example: Nearby RGs with Resolved Hosts - 
M87

Sparkes et al 2004 astro-ph/0402204



Example: Active Galaxies: Cen A



Example: Equilibrium Heating and Cooling: HII 
regions



Example: Galactic ISM



Example: Galactic ISM



Example: z= 3.8 galaxy 4C41.7

4C41.17 Scharf et al 
2003



Theoretical Approach: ISM thermal emission
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Detailed Cooling
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Detailed Cooling
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Detailed Cooling
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Detailed Cooling
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Cooling in the ISM
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Cooling in the ISM
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Cooling in the ISM
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Cooling in the ISM
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Cooling in the ISM
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Cooling in the ISM
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Cooling in the ISM
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Theoretical Approach: ISM Thermal Emission

• The behaviour and properties of the observed ISM
plasma tells us about the underlying processes:

• Input of Energy and Momentum: winds, jets
• Distribution of Energy Sources: starbursts, clusters
• Composition: enrichment histories



Theoretical Approach: ISM thermal emission

• Require detailed a ISM model

• Microphysics- ionisation,excitation, molecular
chemistry, dust physics, radiative transfer

• Excitation Mechanisms: shocks,
photoionisation

• Phase structure and distributions
• Dynamical Radiative properties



Theoretical Approach: ISM thermal emission



Initial Conditions

It would be useful to have a simple 
parameterisation that captures more of the ISM 
properties, beyond smooth distributions

Simulations must change from a simple locally 
uniform geometric initial conditions, <ρ>, <P> 
and v – to a description of a skewed density/
velocity distribution, with a fractal turbulent 
spatial distribution.

27



Single Point and Two Point statistics of a Fractal 
turbulent ISM

• Preferably Analytical Approximations!
• Log-Normal distributions

• ‘Long Tail’, Intermittant distributions
• Observed in many fully developed 3D turbulent fields
• Refers to the single point local statitics, or the histogram of the varables.
• Skewed, so that the mean, the median and mode are not equal, or even si㏕ar
• Well characterised functions, See Notes

• Kolmogarov Turbulence
• Describes the essential fractal nature of a self-si㏕ar structure, via staructure
functuions or Isotropic scalar powerspectra.

• Kolmogarov Turbulence characterised the two-point statistics with a single powerlaw
index, derived from a dimensional analysis of a turbulent cascade, in 1941.
Observed to hold over many orders of scales of magnitude in real world fractals.

• Under certain conditions, the power spectrum index and the second order structure
function indices are related, and either may be used in analysis of structures, See
Notes

28



Initial Conditions

• Log-Normal Distribution - a skewed, local, distribution
characterised by the mean, µ, and the variance, σ2

• For µ = 1, σ2 = 5, 0.5 of the mass resides in 0.25 of
the volume. The mode is ~1/20 of the mean.

• Mean ≠ Median ≠ Mode

29



Dynamic Galaxy X-ray SED: Host ISM

Kolmogarov Spectrum
Density, σ2 = 5
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New 3D X-ray Spectral Synthesis Shock Models

Hypersonic Shockwaves

• Shocks are a ubiquitous and fairly generic means of
transforming kinetic energy into hot thermal plasmas and
emission.

• They are Dynamical ‘initial value’ problems, which may
be integrated over time to produce ensemble averages.

• With tools developed to compute time dependent 3D shocks in
detail, other more general problems become possible.



3D X-ray Wall Shock Model
X-ray Rendering

Soft X-ray 
Emission

R = 0.2-0.3 keV
G= 0.3-0.4 keV
B = 0.4-0.5 keV



3D X-ray Wall Shock Model
Spectra



3D X-ray Wall Shock Model
Thermal Distribution



3D X-ray Wall Shock Model
Cooling Distribution
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3D X-ray Spectral Synthesis Shock Models
Summary

• 3D dynamical models are essential, as the 
turbulence and thermal instability generated 
structures are affected by the dimensionality of the 
simulations.

• By influencing the distribution of density and 
temperatures over time, the resulting spectrum is 
also dependent on the model dimensionality. 

• Only steady shocks can be computed accurately in 
1D or 2D.

• These 3D models will give new spectra for the 
ionising field produced by shockwaves in the ISM



3D X-ray Spectral Synthesis Shock Models
Summary

Limitations of new models presented here:

• � Avoiding, for now, the difficult 3D radiative 
transfer problem, restricting to optically thin X-
ray models and radio emission

• � They are a compromise between complete self-
consistency and speed of execution

• � These 3D models remain limited in resolution, 
new methods will be required to solve higher 
velocity shocks. Normal adaptive mesh methods 
will not be sufficient.



Dynamic Galaxy X-ray SED:  Radio Jet  — X-ray 
overlay



Dynamic Galaxy X-ray SED: Spectra



Dynamic Galaxy X-ray SED: Spectra



Dynamic Galaxy X-ray SED:  X-ray rotation



Future Directions - Hot Bubbles and 
Entrainment

M87 jet bubble
Sparks et al 2004.

Model

Hot - Cool Medium Interface 
Regions




