Hot Molecular Cores at Mopra

Molecular line observations of star-forming regions 2000–2002

Cormac Purcell, Ramesh Balasubramanyam, Lucyna Kedziora-Chudczer, Vincent Minier, Tracey Hill, Michael Burton, Maria Hunt, Peter Barnes, Jill Rathborne.

What is a 'Hot Molecular Core'?

- Protostellar source at an evolutionary stage characterised by rich chemistry.
- High abundances of saturated hydrocarbons fuelled by evaporation from icy grainmantles
- $n(cm^{-3}) \sim 10^7 100 K < T < 300 K$ 0.05pc<0.1pc

What is a 'Hot Molecular Core'? Temperature gradient: the volatile non-polar ices evaporate first leading to an 'onion layer' effect.

From Van Dishoeck et al 1998, after Tielens et al 1991

• Short lifetimes lead to non-equilibrium chemistry.

What is a 'Hot Molecular Core'?

- Time dependent chemical models (Rodgers & Charnley)
- Depending on the initial abundances, the chemistry can be N-rich or O-rich

N-Rich Chemistry

O-Rich Chemistry

Rodgers & Charnley, 2001

Chemical fingerprints for different evolutionary stages

UNSW HMC Project

Project Objectives: – Identify HMCs through their CH₃CN emission.

 Undertake a mm line survey of candidate hot molecular cores and establish their chemical and physical characteristics.

 Constrain current chemical models of hot cores with observations, leading to the development of a time dependent 'chemical fingerprint'.

Source Selection

- 82 sources towards the inner galaxy.
- Source selection criteria:
 - Red IRAS colours- difference between 12, 25
 & 60µm fluxes.
 - Association with methanol maser at 6.67GHz.
 - Association with a radio continuum source signifying a UCHII region.
- Sample split into two groups with strong and weak radio continuum.

The Molecules- CH₃CN

- Confined to hot core phase of star formation.
 - Formed by reactions involving species desorbed from dust grains
- Symmetric top- each (J+1) to J transition has K=0 to K=J components.

The Molecules- CH₃CN

• Derived Parameters: rotational temperature, T_{rot} and beam-averaged column density.

17470-285

100

E

J.M. Hollis, ApJ 160:159-162

- Slope of line fitted through integrated fluxes of Kcomponents ~ T_{rot}
 - Y-axis intercept ~ beam-averaged column densities.
- Assumes LTE conditions and optically thin lines
 - May not always be valid.

The Molecules- HCN

- Large dipole moment & high abundance
 - good tracer of dense gas.
- Each rotational transition split into F = 0-1, F=1-1 & F=2-1 levels, with angular momentum J-1, J & J+1

F(1-1) F(2-1) F(0-1)

- Ratios of hyperfine components sensitive to optical depth effects.
 - At LTE predicted integrated fluxes in the ratio of 1:3:5

The Molecules- HCO⁺

Large dipole moment & high abundance Abundance enhanced near central source where the ionisation fraction is highest.

- Exhibits saturated and self-absorbed line profiles in regions of massive star-formation.
 - Signatures of infall / outflow in line profile asymmetries.

The Molecules- Others

• N_2H^+

 Distinguishes between the two primary reaction networks- N-rich and O-rich.

- HNC & H¹³CO⁺
 - Complimentary to the HCN and HCO⁺ observations, may reveal optical depth effects.
 - HCN / HNC ratio depends on a number of key reactions.
- CH₃OH

 Compare line strenghts to methanol maser fluxes and the number of maser spots.

Observations & Data Reduction

- **Position switching** $-10^ / 1^0$ nod • Bandwidth: 64MHz • Typical T_{sys} ~290K • Sensitivities: $-CH_3CN: 25 mK$ – Others: 50mK • SPC coupled with in-house scripts used to form quotients and average scans. • TCL/TK script available at :
 - www.phys.unsw.edu.au/astro/mopra

Initial Results		
• 600+ spectra ta	ken from 200	00 to 2002
 Initial reduction 	n on the 2000) & 2001 data:
Molecule:	Reduced:	Detection Rate:
CH ₃ CN	79 / 82	32%
HCN	79 / 82	85%
HCO ⁺	79 / 82	91%
HNC	68 / 82	95%
$H^{13}CO^+$	45 / 82	88%

25 detections of CH_3CN from our source list.

0

IRAS 17470-2853 (G0.54-0.85)

 Strong candidate Hot Core • Strongest CH₃CN emission of the 25 detections ~ 0.2 K. • T_{rot} derived to be 108.2 K. Strong methanol maser emission ~ 19 Jy. – Strong methanol line at 96.7 GHz ~ 1 K. Weak associated radio flux at 8.7 GHz ~ 87 mJy Supports hypothesised evolutionary scenario.

Looking Forward

- Next 3 months:
 - Reduce and analyse current data.
- 2003
 - Any other interesting lines?- Thermal SiO
 - Additional sources- cold cores seen in 1.2mm SIMBA maps (Tracey Hill).
- High-resolution molecular maps of selected sources using ATCA

 See Vincent Minier's presentation.

